RESUMO
Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1-4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7-9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)-namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)-results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.
Assuntos
Proteínas de Ligação ao Cálcio , Células Dendríticas , Inflamassomos , Nanopartículas Metálicas , Receptores Acoplados a Proteínas G , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Dendríticas/imunologia , Ouro , Vírus da Influenza A Subtipo H9N2 , Mecanotransdução Celular , Nanopartículas Metálicas/química , Camundongos , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , EstereoisomerismoRESUMO
Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.
Assuntos
Homeostase , Peróxido de Hidrogênio , NADPH Oxidases , Oxirredução , Raízes de Plantas , Potássio , Ácido Salicílico , Tolerância ao Sal , Sódio , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Potássio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Regulação da Expressão Gênica de Plantas , Rhizophoraceae/fisiologia , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.
Assuntos
Ácido Abscísico , Avicennia , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Sódio , Trealose , Trealose/metabolismo , Tolerância ao Sal/genética , Ácido Abscísico/metabolismo , Avicennia/fisiologia , Avicennia/genética , Sódio/metabolismo , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologiaRESUMO
Brassinosteroid (BR) has been shown to modulate plant tolerance to various stresses. S-nitrosoglutathione reductase (GSNOR) is involved in the plant response to environment stress by fine-turning the level of nitric oxide (NO). However, whether GSNOR is involved in BR-regulated Na+ /K+ homeostasis to improve the salt tolerance in halophyte is unknown. Here, we firstly reported that high salinity increases the expression of BR-biosynthesis genes and the endogenous levels of BR in mangrove Kandelia obovata. Then, salt-induced BR triggers the activities and gene expressions of GSNOR and antioxidant enzymes, thereafter decrease the levels of malondialdehyde, hydrogen peroxide. Subsequently, BR-mediated GSNOR negatively regulates NO contributions to the reduction of reactive oxygen species generation and induction of the gene expression related to Na+ and K+ transport, leading to the decrease of Na+ /K+ ratio in the roots of K. obovata. Finally, the applications of exogenous BR, NO scavenger, BR biosynthetic inhibitor and GSNOR inhibitor further confirm the function of BR. Taken together, our result provides insight into the mechanism of BR in the response of mangrove K. obovata to high salinity via GSNOR and NO signaling pathway by reducing oxidative damage and modulating Na+ /K+ homeostasis.
Assuntos
Óxido Nítrico , Rhizophoraceae , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Tolerância ao Sal , Transdução de SinaisRESUMO
The self-oscillation of objects that perform continuous and periodic motions upon unchanging and constant stimuli is highly important for intelligent actuators, advanced robotics, and biomedical machines. Liquid crystalline elastomer (LCE) materials are superior to traditional stimuli-responsive polymeric materials in the development of self-oscillators because of their reversible, large and anisotropic shape-changing ability, fast response ability and versatile structural design. In addition, fiber-shaped oscillators have attracted much interest due to their agility, flexibility and diverse oscillation modes. Herein, we present a strategy for fabricating fiber-shaped LCE self-oscillators using soft tubes as molds. Through the settlement of different configuration states of the soft tubes, the prepared fiber-shaped LCE oscillators can perform continuous rotational self-oscillation or up-and-down shifting self-oscillation under constant light stimuli, which are realized by photoinduced repetitive self-winding motion and self-waving motion, respectively. The mechanism of self-oscillating movements is attributed to the local temperature oscillation of LCE fibers caused by repetitive self-shadowing effects. LCE self-oscillators can operate stably over many oscillating cycles without obvious performance attenuation, revealing good robustness. Our work offers a versatile way by which LCE self-oscillators can be conveniently designed and fabricated in bulk and at low cost, and broadens the road for developing self-oscillating materials for biological robotics and health care machines.
RESUMO
Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.
Assuntos
Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Camundongos , Masculino , Proteínas de Sinalização YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Camundongos Knockout , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Acetiltransferase N-Terminal E/metabolismo , Via de Sinalização Hippo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células Cultivadas , Transdução de Sinais , Acetiltransferases N-Terminal/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
BACKGROUND: Developmental dyslexia (DD) is a neurodevelopmental disorder that is characterized by difficulties with all aspects of information acquisition in the written word, including slow and inaccurate word recognition. The neural basis behind DD has not been fully elucidated. METHOD: The study included 22 typically developing (TD) children, 16 children with isolated spelling disorder (SpD), and 20 children with DD. The cortical thickness, folding index, and mean curvature of Broca's area, including the triangular part of the left inferior frontal gyrus (IFGtriang) and the opercular part of the left inferior frontal gyrus, were assessed to explore the differences of surface morphology among the TD, SpD, and DD groups. Furthermore, the structural covariance network (SCN) of the triangular part of the left inferior frontal gyrus was analyzed to explore the changes of structural connectivity in the SpD and DD groups. RESULTS: The DD group showed higher curvature and cortical folding of the left IFGtriang than the TD group and SpD group. In addition, compared with the TD group and the SpD group, the structural connectivity between the left IFGtriang and the left middle-frontal gyrus and the right mid-orbital frontal gyrus was increased in the DD group, and the structural connectivity between the left IFGtriang and the right precuneus and anterior cingulate was decreased in the DD group. CONCLUSION: DD had atypical structural connectivity in brain regions related to visual attention, memory and which might impact the information input and integration needed for reading and spelling.
Assuntos
Dislexia , Criança , Humanos , Dislexia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Leitura , Mapeamento Encefálico , Lobo Frontal , Imageamento por Ressonância MagnéticaRESUMO
Due to multidrug resistance and the high risk of recurrence, effective and less toxic alternative pancreatic cancer treatments are urgently needed. Pancreatic cancer cells are highly resistant to apoptosis but sensitive to ferroptosis. In this study, an innovative nanoplatform (AsIr@PDA) was developed by electrostatic adsorption of a cationic iridium complex (IrFN) onto two-dimensional (2D) arsenene nanosheets. This nanoplatform exhibits superior ferroptosis-inducing effects with high drug loading capacity and, importantly, excellent anti-cancer immune activation function, leading to efficient elimination of pancreatic tumors with no observable side effects. Interestingly, AsIr@PDA significantly prevents the recurrence of pancreatic cancer in vivo when compared with a cisplatin-loaded nanoplatform. This designed nanoplatform demonstrated superior therapeutic efficacy by synergistic ferroptosis-induced chemotherapy with immunotherapy via an all-in-one strategy, providing new insights for future pancreatic cancer therapy.
Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Irídio , Neoplasias Pancreáticas/tratamento farmacológico , Imunoterapia , Adsorção , Linhagem Celular TumoralRESUMO
Investigation on the interactions between enantiomers of chiral drugs and biomolecules can help precisely understand their biological behaviors in vivo and provide insights into the design of new drugs. Herein, we designed and synthesized a pair of optically pure, cationic, double-stranded dinuclear Ir(III)-metallohelices (Λ2R4-H and Δ2S4-H), and their dramatic enantiomer-dependent photodynamic therapy (PDT) responses were thoroughly studied in vitro and in vivo. Compared to the mononuclear enantiomeric or racemic [Ir(ppy)2(dppz)][PF6] (Λ-/Δ-Ir, rac-Ir) that with high dark toxicity and low photocytotoxicity index (PI) values, both of the optically pure metallohelices displayed negligible toxicity in the dark while exhibiting very distinctive light toxicity upon light irradiation. The PI value of Λ2R4-H was approximately 428, however, Δ2S4-H significantly reached 63,966. Interestingly, only Δ2S4-H was found to migrate from mitochondria to nucleus after light irradiation. Further proteomic analysis verified that Δ2S4-H activated the ATP-dependent migration process after light irradiation, and subsequently inhibited the activities of the nuclear proteins such as superoxide dismutase 1 (SOD1) and eukaryotic translation initiation factor 5A (EIF5A) to trigger the accumulation of superoxide anions and downregulate mRNA splicing processes. Molecular docking simulations suggested that the interactions between metallohelices and nuclear pore complex NDC1 dominated the migration process. This work presents a new kind of Ir(III) metallohelices-based agent with the highest PDT efficacy, highlights the importance of metallohelices' chirality, and provides inspirations for the future design of chiral helical metallodrugs.
Assuntos
Núcleo Celular , Proteômica , Simulação de Acoplamento Molecular , Estereoisomerismo , IrídioRESUMO
The incorporation of chirality endows Pt(II)-based metal-organic complexes (MOCs) with unique potentials in several fields such as nonlinear optics and chiral catalysis. However, the exploration of chiral Pt(II) metallacycles in biological responses remains underdeveloped. Herein, we designed and synthesized two chiral Pt(II) metallacycles 1 and 2 via the coordination-driven self-assembly of chiral 1,1'-spirobiindane-7,7'-diol (SPINOL)-derived ligands and cis-Pt(PEt3)2(OTf)2 (90°Pt). Their structures were well characterized by 1H NMR, 31P{1H} NMR, ESI-TOF-MS, and X-ray crystallography, and their photophysical properties were investigated by UV-vis absorption, fluorescence, and circular dichroism (CD) spectroscopies. Then, the antitumor activity of the two chiral metallacycles in vitro was further tested. Complexes 1 and 2 exhibited strong cytotoxicity, especially toward the A549 cells. The destruction of the mitochondrial function, the inhibition of the glutathione (GSH)/glutathione disulfide (GSSG) level, and the inactivation of superoxide dismutase (SOD) induced by complexes 1 and 2 led to the massive accumulation of reactive oxygen species (ROS). The overloaded ROS then triggered apoptotic cell death, and the release of damage-associated molecular patterns (DAMPs) further induced immunogenic cell death (ICD). To the best of our knowledge, this is the first example of Pt(II)-based metallacycles that can induce immunogenic cell death, providing a new strategy for the future design and construction of immune-modulating platinum agents in cancer therapy.
Assuntos
Complexos de Coordenação , Morte Celular Imunogênica , Humanos , Espécies Reativas de Oxigênio , Glutationa , Células A549 , Apoptose , Complexos de Coordenação/farmacologiaRESUMO
Liquid crystal elastomers (LCEs) are shape-morphing materials whose large and reversible shape transformations are caused by the coupling between the mobile anisotropic properties of liquid crystal (LC) units and the rubber elastic of polymer networks. Their shape-changing behaviors under certain stimuli are largely directed by the LC orientation; therefore, various strategies have been developed to spatially modulate the LC alignments. However, most of these methods are limited as they require complex fabrication technologies or have intrinsic limitations in applicability. To address this issue, programmable complex shape changes in some LCE types, such as polysiloxane side-chain LCEs, thiol-acrylate main-chain LCEs, etc., were achieved by using a mechanical alignment programming process coupled with two-step crosslinking. Here, we report a polysiloxane main-chain LCE with programmable 2- and 3D shape-changing abilities that were created by mechanically programming the polydomain LCE with two crosslinking steps. The resulting LCEs exhibited a reversible thermal-induced shape transformation between the initial and programmed shapes due to the two-way memory between the first and second network structures. Our findings expand on the applications of LCE materials in actuators, soft robotics, and smart structures where arbitrary and easily programmed shape morphing is needed.
RESUMO
BACKGROUND: Asian cotton (Gossypium arboreum L.), as a precious germplasm resource of cotton with insect resistance and stress tolerance, possesses a broad spectrum of phenotypic variation related to pigmentation. Flower color affects insect pollination and the ornamental value of plants. Studying flower color of Asian cotton varieties improves the rate of hybridization and thus enriches the diversity of germplasm resources. Meanwhile, it also impacts the development of the horticultural industry. Unfortunately, there is a clear lack of studies concerning intricate mechanisms of cotton flower-color differentiation. Hereby, we report an integrative approach utilizing transcriptome and metabolome concerning flower color variation in three Gossypium arboreum cultivars. RESULTS: A total of 215 differentially accumulated metabolites (DAMs) were identified, including 83 differentially accumulated flavonoids (DAFs). Colorless kaempferol was more abundant in white flowers, while gossypetin-fer showed specificity in white flowers. Quercetin and gossypetin were the main contributors to yellow petal formation. Pelargonidin 3-O-beta-D-glucoside and cyanidin-3-O-(6''-Malonylglucoside) showed high accumulation levels in purple petals. Quercetin and gossypetin pigments also promoted purple flower coloration. Moreover, 8178 differentially expressed genes (DEGs) were identified by RNA sequencing. The correlation results between total anthocyanins and DEGs were explored, indicating that 10 key structural genes and 29 transcription factors promoted anthocyanin biosynthesis and could be candidates for anthocyanin accumulation. Ultimately, we constructed co-expression networks of key DAFs and DEGs and demonstrated the interactions between specific metabolites and transcripts in different color flowers. CONCLUSION: This study provides new insights into elucidating the regulatory mechanisms of cotton flower color and lays a potential foundation for generate cotton varieties with highly attractive flowers for pollinators.
Assuntos
Antocianinas , Transcriptoma , Antocianinas/metabolismo , Flavonoides/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Pigmentação/genética , Quercetina/metabolismoRESUMO
Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.
Assuntos
Manganês , Polifosfatos , Biopolímeros , Cetrimônio , Íons , Polifosfatos/químicaRESUMO
Targeting cardiomyocyte plasticity has emerged as a new strategy for promoting heart repair after myocardial infarction. However, the precise mechanistic network underlying heart regeneration is not completely understood. As noncoding RNAs, circular RNAs (circRNAs) play essential roles in regulating cardiac physiology and pathology. The present study aimed to investigate the potential roles of circMdc1 in cardiac repair after injury and elucidate its underlying mechanisms. Here, we identified that circMdc1 levels were upregulated in postnatal mouse hearts but downregulated in the regenerative myocardium. The expression of circMdc1 in cardiomyocytes is sensitive to oxidative stress, which was attenuated by N-acetyl-cysteine. Enforced circMdc1 expression inhibited cardiomyocyte proliferation, while circMdc1 silencing led to cardiomyocyte cell cycle re-entry. In vivo, the cardiac-specific adeno-associated virus-mediated knockdown of circMdc1 promoted cardiac regeneration and heart repair accompanied by improved heart function. Conversely, circMdc1 overexpression blunted the regenerative capacity of neonatal hearts after apex resection. Moreover, circMdc1 was able to block the translation of its host gene Mdc1 specifically by binding to PABP, affecting DNA damage and the chromosome stability of cardiomyocytes. Furthermore, overexpression of Mdc1 caused damaged mouse hearts to regenerate and repair after myocardial infarction in vivo. Oxidative stress-sensitive circMdc1 plays an important role in cardiac regeneration and heart repair after injury by regulating DNA damage and chromosome stability in cardiomyocytes by blocking the translation of the host gene Mdc1.
Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Instabilidade Cromossômica , Cisteína/metabolismo , Coração/fisiologia , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oxidantes/metabolismo , RNA Circular/genética , Regeneração/fisiologiaRESUMO
Liquid crystalline elastomer (LCE) materials have been developed and investigated for several decades. One important obstacle, which impedes the practical industrial application of LCE materials, is their modest robustness as actuator materials. In this work, we developed a LCE composite which was fabricated by incorporating eiderdown fibers into a polysiloxane-based main-chain LCE matrix. The eiderdown fibers were used as the flexible reinforcement phase suitable for the shape-morphing performance of LCE materials upon being stimulated. Due to the long fiber property, specific structure and surface characteristics of the eiderdown fibers, they constructed a reinforcement network in the LCE matrix and formed tight interfacial adhesion with the matrix. The LCE composite demonstrated enhanced actuation mechanical properties and robust actuation performance. Its actuation blocking stress and modulus were increased due to the reinforcement effect of the eiderdown fibers. The tensile strength and the performance of anti-fatigue failure under repeated actuation cycles and high loadings were greatly improved due to the crack-resisting effect and bridging effect of the eiderdown fibers. While other properties, such as the liquid crystalline phase structure, the stimulus deformation ratio, phase transition temperature of the LCE matrix, etc., did not deteriorate or change due to the high flexibility, thermal stability and chemical stability of the eiderdown fibers.
RESUMO
AIM: To evaluate ventricular synchronization and function in patients with right bundle-branch block after left bundle-branch-area pacing (LBBAP) by echocardiography. METHODS: Forty patients who successfully received LBBAP were selected and divided into the right bundle-branch block group (RBBB group) and the non-RBBB group by pre-operation ECG. Echocardiography and follow-up were performed 1 month after operation. Interventricular synchronization was evaluated by tissue Doppler (TDI), tissue mitral annular displacement (TMAD), and interventricular mechanical delay. The tricuspid annular plane systolic excursion (TAPSE), right ventricular fractional area change (RVFAC), tricuspid annulus sidewall systolic velocity (TV-s'), left ventricular global ventricular longitudinal strain (GLS), right ventricular free wall longitudinal strain (LS-RV), standard deviation of left ventricular 18 segments peak time difference (SDt-L) and standard deviation of right ventricular free wall 3 segments peak time difference (SDt-R) were applied to evaluate intraventricular synchronization and ventricular function. RESULTS: The difference of displacement peak time of the tricuspid and mitral valves, namely ΔPTTV-MV measured by TMAD, the difference of systolic time to peak of the tricuspid and mitral valves, namely ΔTsTV-MV measured by TDI, were statistically different between the two groups (P < 0.05). Compared with the non-RBBB group, there were no statistically significant differences in the GLS, RVFAC, LS-RV, TAPSE, TV-s', SDt-L, SDt-R (P > 0.05). CONCLUSION: Echocardiography technology including two-dimensional speckle tracking imaging (2D-STI), TDI, and TMAD can effectively analyze interventricular synchronization, intraventricular synchronization, and ventricular function. Although the movement of the right ventricular myocardium in the RBBB group was slightly later than that of the left ventricular myocardium after LBBAP, LBBAP could still be applied in RBBB patients with pacing indication.
Assuntos
Bloqueio de Ramo , Ventrículos do Coração , Bloqueio de Ramo/diagnóstico , Bloqueio de Ramo/terapia , Ecocardiografia , Sistema de Condução Cardíaco , Ventrículos do Coração/diagnóstico por imagem , Humanos , Função Ventricular Esquerda , Função Ventricular DireitaRESUMO
Mammalian cardiomyocytes (CMs) maintain a low capacity for self-renewal in adulthood, therefore the induction of CMs cycle re-entry is an important approach to promote myocardial repair after injury. Recently, photobiomodulation (PBM) has been used to manipulate physiological activities of various tissues and organs by non-invasive means. Here, we demonstrate that conditioned PBM using light-emitting diodes with a wavelength of 630 nm (LED-Red) was capable of promoting the proliferation of neonatal CMs. Further studies showed that low-power LED-Red affected the expression of miR-877-3p and promoted the proliferation of CMs. In contrast, silencing of miR-877-3p partially abolished the pro-proliferative actions of LED-Red irradiation on CMs. Mechanistically, GADD45g was identified as a downstream target gene of miR-877-3p. Conditioned LED-Red irradiation also inhibited the expression of GADD45g in neonatal CMs. Moreover, GADD45g siRNA reversed the positive effect of LED-Red on the proliferation of neonatal CMs. Taken together, conditioned LED-Red irradiation increased miR-877-3p expression and promoted the proliferation of neonatal CMs by targeting GADD45g. This finding provides a new insight into the role of LED-Red irradiation in neonatal CMs biology and suggests its potential application in myocardial injury repair.
Assuntos
MicroRNAs , Miócitos Cardíacos , Animais , Proliferação de Células/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismoRESUMO
Introduction: Poor sleep quality among college students is a global problem. Chinese college students were required to home quarantine, social distance and participate in online learning during the COVID-19 epidemic. This study aimed to investigate the sleep quality of college students during the epidemic and identify the factors related to poor sleep quality. Methods: Study participants completed an online survey that included questionnaires about sleep symptoms and lifestyle during the COVID-19 outbreak. The study participants included 3416 college students (mean age 20.4 ± 1.8 years). The Pittsburgh Sleep Quality Index (PSQI) was used to measure sleep quality, and a PSQI score >7 was defined as poor sleep quality. A logistic regression model was used to analyze the factors related to sleep quality. Results: The percentage of college students with poor sleep quality was 15.97 % in southern Anhui province during the COVID-19 pandemic. The majority of the students were female (67.4%) and most were from urban areas (53.9%). Single-parent (adjusted odds ratio [aOR], 1.39; 95% CI, 1.02-1.89) domestic violence incidents ≥5×/yr (aOR, 3.68; 95% CI, 1.70 to 7.96), nap time >4 hr/d (aOR, 1.90; 95% CI, 25-2.90) were significantly associated with poor sleep quality. While knowledge of COVID-19 was prevalent (aOR, 0.71; 95% CI, 0.53 to 0.96) light exercise >1 hour/day (aOR, 0.47; 95% CI, 0.28 to 0.78), parent-accompanied exercise >3×/wk (aOR, 0.59; 95% CI, 0.38 to 0.90) were protective factors against poor sleep quality. Conclusions: The present study found that college students in single-parent families and students who had experienced domestic violence had a high risk of poor sleep quality during the COVID-19 pandemic in China. College students who were familiar with COVID-19 and had light exercise habits or parent-accompanied exercise habits had better sleep quality. At the time of writing, COVID-19 was still pandemic worldwide, so targeted sleep health interventions must be established to actively guide college students' healthy living habits. In addition, the sleep disorders and other health problems that may occur in college students should be dealt with in advance, and should be part of the routine work of global disease prevention.
Assuntos
COVID-19 , Adolescente , Adulto , COVID-19/epidemiologia , China/epidemiologia , Estudos Transversais , Surtos de Doenças , Feminino , Humanos , Masculino , Pandemias , Qualidade do Sono , Estudantes , Adulto JovemRESUMO
Quantitatively predicting the reactivity of dynamic covalent reaction is essential to understand and rationally design complex structures and reaction networks. Herein, the reactivity of aldehydes and amines in various rapid imine formation in aqueous solution by microfluidic NMR spectroscopy was quantified. Investigation of reaction kinetics allowed to quantify the forward rate constants k+ by an empirical equation, of which three independent parameters were introduced as reactivity parameters of aldehydes (SE , E) and amines (N). Furthermore, these reactivity parameters were successfully used to predict the unknown forward rate constants of imine formation. Finally, two competitive reaction networks were rationally designed based on the proposed reactivity parameters. Our work has demonstrated the capability of microfluidic NMR spectroscopy in quantifying the kinetics of label-free chemical reactions, especially rapid reactions that are complete in minutes.
Assuntos
Iminas , Microfluídica , Aminas , Cinética , Espectroscopia de Ressonância MagnéticaRESUMO
AIMS: N6-Methyladenosine (m6A), one of the important epigenitic modifications, is very commom in messenger RNAs (mRNAs) of eukaryotes, and has been involved in various diseases. However, the role of m6A modification in heart regeneration after injury remains unclear. The study was conducted to investigate whether targeting methyltransferase-like 3 (METTL3) could replenish the loss of cardiomyocytes (CMs) and improve cardiac function after myocardial infarction (MI). METHODS AND RESULTS: METTL3 knockout mouse line was generated. A series of functional experiments were carried out and the molecular mechanism was further explored. We identified that METTL3, a methyltransferase of m6A methylation, is upregulated in mouse hearts after birth, which is the opposite of the changes in CMs proliferation. Furthermore, both METTL3 heterozygous knockout mice and administration of METTL3 shRNA adenovirus in mice exhibited CMs cell cycle re-entered, infract size decreased and cardiac function improved after MI. Mechanically, the silencing of METTL3 promoted CMs proliferation by reducing primary miR-143 (pri-miR-143) m6A modificaiton, thereby inhibiting the pri-miR-143 into mature miR-143-3p. Moreover, we found that miR-143-3p has targeting effects on Yap and Ctnnd1 so as to regulate CMs proliferation. CONCLUSION: METTL3 deficiency contributes to heart regeneration after MI via METTL3-pri-miR-143-(miR-143)-Yap/Ctnnd1 axis. This study provides new insights into the significance of RNA m6A modification in heart regeneration.