RESUMO
Freeze desalination is an appealing method for seawater desalination through freezing seawater. The percentage of ions in the liquid phase, which is termed ion rejection rate, is a critical factor affecting the performance of freeze desalination. Improving the ion rejection rate is an important topic for freeze desalination. In this work, we investigate the effects of electric fields on the ion rejection rate during the freezing of seawater through molecular dynamics simulations. It is found that the ion rejection rate increases with increasing electric field strength. The enhanced ion rejection rate is due to the reduction of the energy barrier at the ice-water interface caused by the electric field, which affects the orientation of water molecules and ion-water interactions. However, the electric field hinders the ice growth rate, which affects the productivity of freeze desalination. Nevertheless, the finding in this work offers a new idea to improve the ion rejection rate. Practically, a trade-off needs to be found to optimize the overall performance of freeze desalination.
RESUMO
Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N2O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10- 8 M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R2 = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.
RESUMO
Primary failure of eruption (PFE) is a rare oral disease with an incidence rate of 0.06%. It is characterized by abnormal eruption mechanisms that disrupt tooth eruption. The underlying pathogenic genetic variant and mechanism of PFE remain largely unknown. The purpose of this study was to explore the role of a novel transmembrane protein 119 (TMEM119) mutation in two PFE patients in a Chinese family. Information collection was performed on the family with a diagnosis of PFE, and blood samples from patients and healthy family members were extracted. Whole-exome sequencing was performed. Bioinformatics analysis revealed that a heterozygous variant in the TMEM119 gene (c.G143A, p.S48L) was a disease-associated mutation in this family. Recombinant pcDNA3.1 plasmid-containing wild-type and mutant TMEM119 expression cassettes were successfully constructed and transfected into MC3T3-E1 cells, respectively. The results of in vitro analysis suggested that the subcellular distribution of the TMEM119 protein was transferred from the cell cytoplasm to the nucleus, and the ability of cells to proliferate and migrate as well as glycolytic and mineralized capacities were reduced after mutation. Furthermore, rescue assays showed that activating transcription factor 4 (ATF4) overexpression rescued the attenuated glycolysis and mineralization ability of cells. Results of in vivo analysis demonstrated that TMEM119 was mainly expressed in the alveolar bone around the mouse molar germs, and the expression level increased with tooth eruption, demonstrated using immunohistochemistry and immunofluorescence. Collectively, the novel TMEM119 mutation is potentially pathogenic in the PFE family by affecting the glucose metabolism and mineralized function of osteoblasts, including interaction with ATF4. Our findings broaden the gene mutation spectrum of PFE and further elucidate the pathogenic mechanism of PFE.
Assuntos
Osteogênese , Erupção Dentária , Humanos , Animais , Camundongos , Erupção Dentária/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Mutação , GlicóliseRESUMO
Forest transformation can markedly impact soil greenhouse gas emissions and soil environmental factors. Due to increasing labor costs and declining bamboo prices, the abandonment of Moso bamboo forests is sharply escalating in recent years, which weakens the carbon sequestration capacity and decreases the ecological function of forests. To improve the ecological quality of abandoned Moso bamboo forests, transformations of abandoned bamboo forests have occurred. However, the impact of such transformations on N2O emissions remains elusive. To bridge the knowledge gap, we conducted a 23-month field experiment to compare the effects of various forest management practices on soil N2O emissions and soil environmental factors in abandoned Moso bamboo forests in subtropical China. These practices included uncut abandonment as a control, intensive management, three intensities (light, moderate, and heavy) of strip clear-cutting with replanting local tree species, and clear-cutting with replanting transformation. During the experimental period, the mean soil N2O flux in abandoned Moso bamboo forests was 13.2 ± 0.1 µg m-2 h-1, representing a 44% reduction compared to intensive management forests. In comparison to the uncut control, light, moderate, and heavy strip clear-cutting and clear-cutting transformations increased soil N2O emission rates by 20%, 43%, 64%, and 94%, respectively. Soil temperature (69-71%), labile C (2-6%) and N (3-8%) were the main factors that explain N2O emissions following the transformation of abandoned Moso bamboo forests. Additionally, replanting could decrease soil N2O emissions by increasing the contribution of soil moisture. Overall, the light strip clear-cutting transformation is suggested to convert abandoned Moso bamboo forests to mitigate N2O emissions.
RESUMO
Biochar amendments are effective in stabilizing soil aggregates and improving soil organic carbon (SOC) content. However, the effects of biochar on highly acidic soil and their relation with soil SOC stability remain understudied. The study aimed to investigate the impact of biochar on changes of aggregate distribution and SOC stability in a highly acidic tea plantation soils over an eight-year period. Soil samples were collected from plots with varying biochar application amounts (0, 2.5 t ha-1, 5 t ha-1, 10 t ha-1, 20 t ha-1 and 40 t ha-1). The content of SOC, iron bound organic carbon (OC-Fe), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the functional group composition of SOC was analyzed. The results indicated that in the biochar application treatments, the value of soil pH, SOC, POC and MAOC contents were increased from 3.92 to 4.28, 6.68%-187.02%, 8.31%-66.78% and 13.07%-236.47% respectively, compared with CK, while the content of macro-aggregate (particle size>0.25 mm) and soil aggregates mean weight diameter (MWD) significantly increased with higher biochar application amounts. But dissolved organic carbon (DOC) and OC-Fe content exhibited downward trend, decreased from 2.43% to 6.97% and 4.18%-19.91%. Furthermore, aromatic-C levels increased, with increased biochar application amounts. The integration of biochar not only bolstered soil aggregate stability but also amplified the presence of aromatic-C, thereby enhancing the resilience of organic carbon in highly acidic tea garden soil (BC40 > BC20 > BC5>BC2.5 > BC10 > CK), with increases ranging from 6% to 47%. The principal component analysis and structural equation modeling identified soil pH, TN, SOC, POC, MAOC, R > 0.25 and MWD as key factors of soil organic carbon stability. These findings provide crucial insights into the mechanism underlying biochar's efficiency in fortifying organic carbon stability, particularly in the context of highly acidic soil.
RESUMO
Skeletal mandibular hypoplasia (SMH) is one of the most common skeletal craniofacial deformities in orthodontics, which was often accompanied by impaired chondrogenesis and increasing apoptosis of condylar chondrocytes. Therefore, protecting chondrocytes from apoptosis and promoting chondrogenesis in condylar growth is vital for treatment of SMH patients. Transferrin (TF) was highly expressed in condylar cartilage of newborn mice and was gradually declined as the condyle ceased growing. Interestingly, serum level of TF in SMH patients was significantly lower than normal subjects. Hence, the aim of our study was to investigate the effect of TF on survival and differentiation of chondrocytes and condylar growth. First, we found that TF protected chondrogenic cell line ATDC5 cells from hypoxia-induced apoptosis and promoted proliferation and chondrogenic differentiation in vitro. Second, TF promoted chondrogenic differentiation and survival through activating autophagic flux. Inhibiting autophagic flux markedly blocked the effects of TF. Third, TF significantly activated ULK1-ATG16L1 axis. Silencing either transferrin receptor (TFRC), ULK1/2 or ATG16 significantly blocked the autophagic flux induced by TF, as well as its effect on anti-apoptosis and chondrogenic differentiation. Furthermore, we established an organoid culture model of mandible ex vivo and found that TF significantly promoted condylar growth. Taken together, our study unraveled a novel function of TF in condylar growth that TF protected chondrocytes from hypoxia-induced apoptosis and promoted chondrogenic differentiation through inducing autophagy via ULK1-ATG16L1 axis, which demonstrated that TF could be a novel growth factor of condylar growth and shed new light on developing treatment strategy of SMH patients.
Assuntos
Condrogênese , Transferrina , Humanos , Animais , Camundongos , Transferrina/farmacologia , Diferenciação Celular , Autofagia , Hipóxia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Relacionadas à AutofagiaRESUMO
As the main anthropogenic source in open seas and coastal areas, ship emissions impact the climate, air quality, and human health. The latest marine fuel regulation with a sulfur content limit of 0.5% went into effect globally on January 1, 2020. Investigations of ship emissions after fuel switching are necessary. In this study, online field measurements at an urban coastal site and modeling simulations were conducted to detect the impact of ship emissions on air quality in the Greater Bay Area (GBA) in China under new fuel regulation. By utilizing a high mass-resolution single particle mass spectrometer, the vanadium(V) signal was critically identified and was taken as a robust indicator for ship-emitted particles (with relative peak area > 0.1). The considerable number fractions of high-V particles (up to 30-40% during ship plumes) indicated that heavy fuel oils via simple desulfurization or blending processes with low-sulfur fuels were extensively used in the GBA to meet the global 0.5% sulfur cap. Our results showed that ship-emitted particulate matter and NOx contributed up to 21.4% and 39.5% to the ambient, respectively, in the summertime, significantly affecting the air quality in the GBA. The sea-land breeze circulation also played an important role in the transport pattern of ship-emitted pollutants in the GBA.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Navios , Poluição do Ar/análise , Material Particulado/análise , China , EnxofreRESUMO
AIM: Macrophages are closely involved in periodontitis. However, the molecular mechanism by which macrophages influence periodontitis is not well understood. We investigated the effects of phosphatase and tensin homologue (PTEN) on macrophage polarization, the underlying mechanism and the regulatory roles in periodontium regeneration. MATERIALS AND METHODS: PTEN expression in periodontitis macrophages was detected ex vivo. The effects of PTEN on macrophage polarization and the underlying mechanisms were investigated in vitro. We also analysed the ability of PTEN inhibitors to repair periodontitis in vivo in a ligature-induced mouse model of periodontitis. RESULTS: Macrophage PTEN expression in periodontitis patients was significantly higher than that of controls. PTEN inhibition in macrophages induced alternative macrophage polarization, whereas PTEN overexpression facilitated classical polarization. PTEN inhibition facilitated activation of Akt1 while inhibiting expression of Akt2. Furthermore, Akt2 overexpression could rescue the effects of PTEN inhibition on NF-κB. Treatment with a PTEN inhibitor significantly attenuated the local inflammatory status and prevented alveolar bone resorption in the mouse model. CONCLUSIONS: Our findings suggest that PTEN inhibition could induce alternative macrophage polarization by differentially regulating Akt1 and Akt2. This also changed a pro-inflammatory microenvironment to an anti-inflammatory environment by subsequently regulating the expression of NF-κB, thereby attenuating inflammatory alveolar bone resorption induced by ligature.
Assuntos
Perda do Osso Alveolar , Macrófagos , PTEN Fosfo-Hidrolase , Periodontite , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Macrófagos/metabolismo , NF-kappa B/metabolismo , Periodontite/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismoRESUMO
OBJECTIVES: Confirm that stem cells from human exfoliated deciduous teeth-derived exosomes (SHED-exos) can limit inflammation-triggered epithelial cell apoptosis and explore the molecular mechanism. METHODS: SHED-exos were injected into the submandibular glands (SMGs) of non-obese diabetic (NOD) mice, an animal model of Sjögren's syndrome (SS). Cell death was evaluated by western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. RESULTS: SHED-exos treatment promoted the saliva flow rates of NOD mice, accompanied by decreased cleaved caspase-3 levels and apoptotic cell numbers in SMGs. SHED-exos inhibited autophagy, pyroptosis, NETosis, ferroptosis, necroptosis and oxeiptosis marker expression in SS-damaged glands. Mechanistically, Kyoto Encyclopedia of Genes and Genomes analysis of exosomal miRNAs suggested that the rat sarcoma virus (RAS)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway might play an important role. In vivo, the expression of Kirsten RAS, Harvey RAS, MEK1/2 and p-ERK1/2 was upregulated in SMGs, and this change was blocked by SHED-exos treatment. In vitro, SHED-exos suppressed p-ERK1/2 activation and increased cleaved caspase-3 and apoptotic cell numbers, which were induced by IFN-γ. CONCLUSION: SHED-exos suppress epithelial cell death, which is responsible for promoting salivary secretion. SHED-exos inhibited inflammation-triggered epithelial cell apoptosis by suppressing p-ERK1/2 activation, which is involved in these effects.
RESUMO
BACKGROUND: Studies suggested that greenness could reduce death risks related to ambient exposure to particulate matter (PM), while the available evidence was mixed across the globe and substantially exiguous in low- and middle-income countries. By conceiving an individual-level case-crossover study in central China, this analysis primarily aimed to quantify PM-mortality associations and examined the modification effect of greenness on the relationship. METHODS: We investigated a total of 177,058 nonaccidental death cases from 12 counties in central China, 2008-2012. Daily residential exposures to PM2.5 (aerodynamic diameter <2.5 µm), PMc (aerodynamic diameter between 2.5 and 10 µm), and PM10 (aerodynamic diameter <10 µm) were assessed at a 1 × 1-km resolution through satellite-derived machine-learning models. Residential surrounding greenness was assessed using satellite-derived enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) at multiple buffer sizes (250, 500, and 1000 m). To quantify the acute mortality risks associated with short-term exposure to PM2.5, PMc, and PM10, a time-stratified case-crossover design was utilized in conjunction with a conditional logistic regression model in our main analyses. To investigate the effect modification of greenness on PM-mortality associations, we grouped death cases into low, medium, and high greenness levels using cutoffs of 25th and 75th percentiles of NDVI or EVI exposure, and examined potential effect heterogeneity in PM-related mortality risks among these groups. RESULTS: Mean concentrations (standard deviation) on the day of death were 73.8 (33.4) µg/m3 for PM2.5, 43.9 (17.3) µg/m3 for PMc, and 117.5 (44.9) µg/m3 for PM10. Size-fractional PM exposures were consistently exhibited significant associations with elevated risks of nonaccidental and circulatory mortality. For every increase of 10-µg/m3 in PM exposure, percent excess risks of nonaccidental and circulatory mortality were 0.271 (95% confidence interval [CI]: 0.010, 0.533) and 0.487 (95% CI: 0.125, 0.851) for PM2.5 at lag-01 day, 0.731 (95% CI: 0.108, 1.359) and 1.140 (95% CI: 0.267, 2.019) for PMc at lag-02 day, and 0.271 (95% CI: 0.010, 0.533) and 0.386 (95% CI: 0.111, 0.662) for PM10 at lag-01 day, respectively. Compared to participants in the low-level greenness areas, those being exposed to higher greenness were found to be at lower PM-associated risks of nonaccidental and circulatory mortality. Consistent evidence for alleviated risks in medium or high greenness group was observed in subpopulations of female and younger groups (age <75). CONCLUSIONS: Short-term exposure to particulate air pollution was associated with elevated risks of nonaccidental and circulatory death, and individuals residing in higher neighborhood greenness possessed lower risk of PM-related mortality. These findings emphasized the potential public health advantages through incorporating green spaces into urban design and planning.
Assuntos
Poluição do Ar , Poeira , Feminino , Humanos , Estudos Cross-Over , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , ChinaRESUMO
Ionizable lipid-containing lipid nanoparticles (LNPs) as a non-viral vector with good safety and potency have been considered as an ideal delivery system for gene therapy. The screening of ionizable lipid libraries with common features but diverse structures holds the promise of finding new candidates for LNPs to deliver different nucleic acid drugs such as messenger RNAs (mRNAs). Chemical strategies for the facile construction of ionizable lipid libraries with diverse structure are in high demand. Here, we report on the ionizable lipids containing the triazole moiety prepared by the copper-catalyzed alkyne-azide click reaction (CuAAC). We demonstrated that these lipids served well as the major component of LNPs, in order to encapsulate mRNA using luciferase mRNA as the model system. Thus, this study shows the potential of click chemistry in the preparation of lipid libraries for LNP assembly and mRNA delivery.
Assuntos
Lipídeos , Nanopartículas , RNA Mensageiro/genética , Lipídeos/química , Terapia Genética , Nanopartículas/química , RNA Interferente Pequeno/genéticaRESUMO
BACKGROUND: Given the difficulties or incapacity of teeth movement in orthodontic treatment, the ways to speed tooth movement must be investigated. Besides, nonsteroidal anti-inflammatory drugs (NSAIDs) were utilized to treat pain caused by tooth movement during orthodontic treatment. The purpose of this study is to examine the impact of aspirin and low-frequency high-intensity ultrasound (LFHIU) on rat orthodontic tooth movement in rats. METHODS: Thirty-six male Sprague-Dawley rats were divided into three groups: orthodontic (O), ultrasound-treated orthodontic (OU), and ultrasound-treated orthodontic with aspirin gavage (OUA) group. In the OU and OUA group, LFHIU (44 W/cm2, 28 kHz) was applied to the buccal side of the maxillary first molar alveolar bone for 10 s every day. In the OUA group, aspirin was given by gavage every day. The rats were sacrificed on days 1, 3, 7, and 14. RESULTS: After ultrasonic treatment, the speed of tooth movement was increased by about 1.5 times. And the number of osteoclasts considerably increased by about 2 times. However, they decreased slightly after aspirin gavage. By Applying ultrasound therapy, Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) levels in periodontal tissue were elevated. Aspirin was able to reduce these increases. Results from Micro Computed Tomography (Micro-CT) revealed that bone mineral density decreased by about 1/5 after ultrasound treatment on the compression side. The rate of bone mineral apposition indicated that bone was forming under tension, and that of the OU group increased by about 1.3 times that O group. CONCLUSIONS: Although aspirin slowed this trend, LFHIU still enhanced overall tooth mobility in orthodontic treatment.
Assuntos
Aspirina , Técnicas de Movimentação Dentária , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Microtomografia por Raio-X , UltrassonografiaRESUMO
OBJECTIVE: To study the effect of reactive oxygen species(ROS) in cadmium chloride-induced apoptosis of mouse Leydig cells(TM3 cells) and explore the underlying molecular mechanisms. METHODS: TM3 cells were used as an in vitro model for studying reproductive toxicity induced by cadmium exposure. The cells were treated with different concentrations of CdCl_2(0, 5 and 10 µmol/L) for 24 h. CCK-8 assay was used to detect the effect of CdCl_2 on TM3 cell activity. Hoechst33342 staining was performed to explore the formation of apoptotic bodies. DCFH-DA probe was used to detect the level of ROS in the cells. TM3 cells were pretreated with 1 mmol/L NAC for 1 h and then treated with 10 µmol/L CdCl_2 for 24 h. The protein expression levels of pro-apoptotic proteins Caspase-9 and cleaved Caspase-3 were detected by Western blot; RT-qPCR was used to measure the expression of anti-apoptotic gene Bcl-2 and pro-apoptotic genes Caspase-9 and Caspase-3. RESULTS: After exposure to CdCl_2 for 24 h, viability of TM3 cells decreased and the number of apoptotic bodies increased. Western blot result showed that the protein level of Caspase-9 in the 10 µmol/L CdCl_2 treatment group was increased to 0.86±0.10(P<0.05) compared with the control group(0.56±0.07). Compared with the control group(0.37±0.11), the protein level of cleaved Caspase-3 in the 5 and 10 µmol/L CdCl_2 treatment groups were increased to 0.65±0.03 and 1.05±0.13(P<0.05). Compared with the control group(46.80±1.24), the intracellular ROS content in the 5 and 10 µmol/L treatment groups increased to 60.47±1.39 and 80.63±1.34(P<0.05). Compared with the cadmium-treated group, NAC inhibited Caspase-9(CdCl_2 group: 0.89±0.07; CdCl_2+NAC group: 0.28±0.02)and cleaved Caspase-3(CdCl_2 group: 1.53±0.21; CdCl_2+NAC group: 0.66 ±0.07), the difference was statistically significant(P<0.05). At the same time, NAC decreased the ROS level(62.64±0.93) in the CdCl_2 exposure group(80.13±0.94)(P<0.05). In addition, RT-qPCR result showed that the Caspase-9 mRNA levels in the 5 and 10 µmol/L CdCl_2 treatment groups were 1.40±0.14 and 1.90±0.12(P<0.05), compared with the control group(0.97±0.10). Compared with the control group(0.88±0.08), the cleaved Caspase-3 mRNA levels in the 5 and 10 µmol/L CdCl_2 treatment groups were increased to 1.42±0.11 and 1.59±0.12(P<0.05). While in the 5 and 10 µmol/L CdCl_2-treated group, compared with the control group(0.94±0.02), the Bcl-2 mRNA level were decreased to 0.60±0.02 and 0.50±0.09(P<0.05). Compared with the cadmium treatment group(0.57±0.06), NAC could significantly improve the cadmium-induced Bcl-2 mRNA expression level(0.92±0.03), and Caspase-9(CdCl_2 group: 1.96±0.07; CdCl_2+NAC group: 1.04±0.02) and Caspase-3(CdCl_2 group: 1.65±0.02; CdCl_2+NAC group: 0.66±0.04) were decreased(P<0.05). CONCLUSION: The Caspase cascade in mouse Leydig cells can be activated by excessive ROS induced by CdCl_2, and inhibition of ROS production can significantly reduce the CdCl_2-induced apoptosis of TM3 cells.
Assuntos
Cloreto de Cádmio , Cádmio , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Cádmio/farmacologia , Caspase 9/metabolismo , Caspase 9/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Cádmio/toxicidade , Células Intersticiais do Testículo/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
OBJECTIVE: To study the effect of autophagy in cadmium chloride(CdCl_2)-induced apoptosis of mouse spermatocytes(GC-2 spd) cells and explore the underlying molecular mechanisms. METHODS: The cells were treated with different concentrations of CdCl_2(0, 5 and 10 µmol/L) for 24 h. Hoechst33342 staining and monodansylcadaverine(MDC) were performed to explore the formation of autophagosomes and apoptotic bodies. The apoptosis of cadmium-treated cells was examined by TUNEL staining. Autophagy inhibitor 3-methyladenine(3-MA)(60 µmol/L), apoptotic inhibitorCaspase inhibitor Z-VAD-FMK( zVAD-FMK)(50 nmol/L), autophagy inducer rapamycin(RAPA)(50 nmol/L) and lysosomal inhibitor chloroquine(CQ)(10 µmol/L) were added to cell culture in the presence/absence of CdCl_2(10 µmol/L) to treat GC-2 spd cells for 24 h. The expression levels of autophagy-related proteins LC3, P62, and pro-apoptotic proteins cleaved Caspase-3 and cleaved Caspase-9 were examined by Western blot. RESULTS: Autophagosomes aggregated and the number of apoptotic cells increased after exposure to CdCl_2 for 24 h. Western blot result showed that in the 5 and 10 µmol/L CdCl_2 exposure groups, the protein expression levels of LC3II/LC3I increased to 9.23±0.81 and 12.15±0.80 compared with the control group(5.50±0.56)(P<0.05), LC3II protein expression level increased to 3.35±0.14 and 3.47±0.32 compared with the control group(2.35±0.34)(P<0.05), P62 protein expression level increased to 1.48±0.12 and 1.80±0.22 compared with the control group(0.83±0.09)(P<0.05). Compared with the CdCl_2-treated group, the protein expression levels of LC3II/LC3I, LC3II, P62, cleaved Caspase-9 and cleaved Caspase-3 after 3-MA treatment decreased to 0.90±0.07(CdCl_2 group: 1.47±0.06), 1.57±0.14(CdCl_2 group: 2.45±0.29), 0.82±0.05(CdCl_2 group: 1.44±0.18), 0.18±0.01(CdCl_2 group: 0.28±0.01) and 0.61±0.84(CdCl_2 group: 1.15±0.04)(P<0.05). Compared with the CdCl_2-treated group, the protein expression levels of cleaved Caspase-9 and cleaved Caspase-3 after zVAD-FMK treatment decreased to 0.12±0.01(CdCl_2 group: 0.28±0.01) and 0.34±0.01(CdCl_2 group: 1.15±0.04)(P<0.05), while those of LC3II/LC3I, LC3II and P62 had no significant change(P>0.05). Compared with the CdCl_2-treated group, RAPA enhanced cadmium-induced LC3II/LC3I, LC3II and P62 protein expressions to 2.22±0.21(CdCl_2 group: 1.56±0.06), 3.72±0.21(CdCl_2 group: 2.97±0.15) and 2.41±0.19(CdCl_2 group: 1.52±0.35)(P<0.05). Western blot result showed that compared with the CdCl_2 group, the protein expressions of LC3II/LC3I, LC3II, P62 and cleaved Caspase-3 in the CdCl_2 and CQ treatment groups increased to 3.21±0.31(CdCl_2 group: 2.09±0.25), 4.49±0.43(CdCl_2 group: 2.72±0.26), 2.59±0.19(CdCl_2 group: 1.84±0.19) and 2.43±0.23(CdCl_2 group: 1.50±0.27)(P<0.05). CONCLUSION: Cadmium chloride induces apoptosis of mouse spermatocyte cells by inhibiting autophagosome-lysosomal fusion and prompting abnormal aggregation of autophagosomes.
Assuntos
Cloreto de Cádmio , Cádmio , Masculino , Camundongos , Animais , Caspase 3/farmacologia , Caspase 9/genética , Caspase 9/farmacologia , Cloreto de Cádmio/toxicidade , Autofagia , ApoptoseRESUMO
Abdominal aortic aneurysm (AAA) is characterized by abdominal aorta dilatation and progressive structural impairment and is usually an asymptomatic and potentially lethal disease with a risk of rupture. To investigate the underlying mechanisms of AAA initiation and progression, seven AAA datasets related to human and mice were downloaded from the GEO database and reanalysed in the present study. After comprehensive bioinformatics analysis, we identified the enriched pathways associated with inflammation responses, vascular smooth muscle cell (VSMC) phenotype switching and cytokine secretion in AAA. Most importantly, we identified ATPase Na+ /K+ transporting subunit alpha 2 (ATP1A2) as a key gene that was significantly decreased in AAA samples of both human and mice; meanwhile, its reduction mainly occurred in VSMCs of the aorta; this finding was validated by immunostaining and Western blot in human and mouse AAA samples. Furthermore, we explored the potential upstream transcription factors (TFs) that regulate ATP1A2 expression. We found that the TF AT-rich interaction domain 3A (ARID3A) bound the promoter of ATP1A2 to suppress its expression. Our present study identified the ARID3A-ATP1A2 axis as a novel pathway in the pathological processes of AAA, further elucidating the molecular mechanism of AAA and providing potential therapeutic targets for AAA.
Assuntos
Aneurisma da Aorta Abdominal , Proteínas de Ligação a DNA , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição , Angiotensina II/metabolismo , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/metabolismoRESUMO
PURPOSE: Quantitative T1ρ imaging is an emerging technique to assess the biochemical properties of tissues. In this paper, we report our observation that liver iron content (LIC) affects T1ρ quantification of the liver at 3.0T field strength and develop a method to correct the effect of LIC. THEORY AND METHODS: On-resonance R1ρ (1/T1ρ ) is mainly affected by the intrinsic R2 (1/T2 ), which is influenced by LIC. As on-resonance R1ρ is closely related to the Carr-Purcell-Meiboom-Gill (CPMG) R2 , and because the calibration between CPMG R2 and LIC has been reported at 1.5T, a correction method was proposed to correct the R2 contribution to the R1ρ . The correction coefficient was obtained from the calibration results and related transformed factors. To compensate for the difference between CPMG R2 and R1ρ , a scaling factor was determined using the values of CPMG R2 and R1ρ , obtained simultaneously from a single breath-hold from volunteers. The livers of 110 subjects were scanned to validate the correction method. RESULTS: LIC was significantly correlated with R1ρ in the liver. However, when the proposed correction method was applied to R1ρ , LIC and the iron-corrected R1ρ were not significantly correlated. CONCLUSION: LIC can affect T1ρ in the liver. We developed an iron-correction method for the quantification of T1ρ in the liver at 3.0T.
Assuntos
Sobrecarga de Ferro , Ferro , Calibragem , Humanos , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/tratamento farmacológico , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodosRESUMO
INTRODUCTION: NOD-like receptor C5 (NLRC5) plays a significant role in the immune system, and is one of the largest members of the pattern recognition receptor family. Previous studies have found that NLRC5 might be involved in the regulation of various diseases, such as fibrotic diseases and cancers; however, its effect on bone metabolism-related diseases has not been reported. METHODS: Skeletons of Nlrc5-/- mice generated by CRISPR/Cas9 and wild-type (WT) mice were compared using X-ray, micro-computed tomography, double labeling, and histological examination. Tartrate-resistant acid phosphatase and pit-absorption assays were performed to evaluate the effect of NLRC5 on osteoclasts differentiation and osteoclastic capacity. The influence of NLRC5 on osteoblasts differentiation and bone formation were studied using alkaline phosphatase and alizarin red staining, respectively. Experimental periodontitis was induced by Porphyromonas gingivalis infection and ligature to investigate the role of NLRC5 in inflammatory periodontal bone loss. RESULTS: Adenovirus-mediated NLRC5 overexpression in human bone marrow mesenchymal stem cells regulated osteogenesis positively. The femoral osteogenesis ability was significantly weakened in Nlrc5-/- mice. Histology showed that the area of the femoral trabeculae in the Nlrc5-/- mice was less than that in the WT mice, and radiology suggested that the Nlrc5-/- mice had fewer trabeculae and a thinner bone cortex than those of the WT mice. Nlrc5 knockout decreased osteoblast mineralization and increased osteoclastogenesis in vitro. NLRC5 was downregulated in periodontitis and P. gingivalis infection. In the experimental periodontitis model, the alveolar bone loss, inflammatory cell infiltration, and inflammatory cytokines secretion (interleukin [IL]-1ß, IL-6, and tumor necrosis factor alpha [TNF-α]) in the Nlrc5-/- mice were significantly enhanced compared to WT mice. CONCLUSION: We verified a novel role of NLRC5 in bone metabolism by regulating both osteoclasts activity and osteoblasts activity. Our results revealed a protective effect of NLRC5 against periodontal inflammation and alveolar bone destruction. NLRC5 could be a novel treatment target to prevent periodontal bone destruction.
Assuntos
Perda do Osso Alveolar , Osso e Ossos , Peptídeos e Proteínas de Sinalização Intracelular , Periodontite , Perda do Osso Alveolar/patologia , Animais , Osso e Ossos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Osteoclastos/metabolismo , Periodontite/metabolismo , Porphyromonas gingivalis , Microtomografia por Raio-XRESUMO
BACKGROUND: In the malignant progression of oral leukoplakia (OLK) to oral squamous cell carcinoma (OSCC), the density of microvessels and expression of angiogenesis-related molecules increases. Emerging evidence indicates that mesenchymal stem cells (MSCs) play an indispensable role in the tumor microenvironment. However, the role and mechanism of action of oral MSCs in inducing angiogenesis remain unclear. Therefore, it is necessary to explore the molecules and mechanisms that play a role in the tissue microenvironment. METHODS: Exosomes were collected from normal oral mucosa (N-Exo), OLK (OLK-Exo), and OSCC (Ca-Exo) MSCs, and their pro-angiogenic capacity was evaluated in human umbilical vein endothelial cells (HUVECs) and a subcutaneously implanted tumor model in nude mice. Quantitative proteomics analysis was used to compare the exosome-derived proteins between N-Exo, OLK-Exo, and Ca-Exo. RESULTS: Compared with that of the N-Exo and control, OLK-Exo and Ca-Exo treatment significantly promoted HUVEC migration, invasion, and tube-formation capability. In the nude mice model, immunofluorescence of CD31 showed that OLK-Exo and Ca-Exo substantially improved neovascularization around the grafts. Quantitative proteomics analysis revealed that matrix metalloproteinase 1 (MMP1) levels were significantly higher in the OLK-Exo and Ca-Exo groups than in the N-Exo groups. Silencing MMP1 expression reversed the functional promoting effect of OLK-Exo and Ca-Exo on HUVECs. CONCLUSION: Exosomes from OLK-MSCs and Ca-MSCs have a stronger pro-angiogenic ability through high MMP1 content. This new finding provides insight into the intervention with the secretion of MSC-derived exosomes, which may be an innovative strategy for carcinogenesis.
Assuntos
Carcinoma de Células Escamosas , Exossomos , Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Neoplasias Bucais , Animais , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/metabolismo , Exossomos/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Leucoplasia Oral/patologia , Metaloproteinase 1 da Matriz , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Neoplasias Bucais/patologia , Neovascularização Patológica/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente TumoralRESUMO
OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is an increasing healthcare burden worldwide. We examined the role of dietary cholesterol in driving NAFLD-HCC through modulating gut microbiota and its metabolites. DESIGN: High-fat/high-cholesterol (HFHC), high-fat/low-cholesterol or normal chow diet was fed to C57BL/6 male littermates for 14 months. Cholesterol-lowering drug atorvastatin was administered to HFHC-fed mice. Germ-free mice were transplanted with stools from mice fed different diets to determine the direct role of cholesterol modulated-microbiota in NAFLD-HCC. Gut microbiota was analysed by 16S rRNA sequencing and serum metabolites by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Faecal microbial compositions were examined in 59 hypercholesterolemia patients and 39 healthy controls. RESULTS: High dietary cholesterol led to the sequential progression of steatosis, steatohepatitis, fibrosis and eventually HCC in mice, concomitant with insulin resistance. Cholesterol-induced NAFLD-HCC formation was associated with gut microbiota dysbiosis. The microbiota composition clustered distinctly along stages of steatosis, steatohepatitis and HCC. Mucispirillum, Desulfovibrio, Anaerotruncus and Desulfovibrionaceae increased sequentially; while Bifidobacterium and Bacteroides were depleted in HFHC-fed mice, which was corroborated in human hypercholesteremia patients. Dietary cholesterol induced gut bacterial metabolites alteration including increased taurocholic acid and decreased 3-indolepropionic acid. Germ-free mice gavaged with stools from mice fed HFHC manifested hepatic lipid accumulation, inflammation and cell proliferation. Moreover, atorvastatin restored cholesterol-induced gut microbiota dysbiosis and completely prevented NAFLD-HCC development. CONCLUSIONS: Dietary cholesterol drives NAFLD-HCC formation by inducing alteration of gut microbiota and metabolites in mice. Cholesterol inhibitory therapy and gut microbiota manipulation may be effective strategies for NAFLD-HCC prevention.
Assuntos
Atorvastatina/farmacologia , Carcinoma Hepatocelular/prevenção & controle , Colesterol na Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Carcinoma Hepatocelular/etiologia , Estudos de Casos e Controles , Progressão da Doença , Transplante de Microbiota Fecal , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicaçõesRESUMO
AIMS: To determine the absorption, distribution, metabolism and excretion of abivertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced non-small cell lung cancer (NSCLC). METHODS: Seven patients with advanced NSCLC were given a single 200 mg/83 µCi oral suspension of [14 C]-abivertinib. Blood, urine and faeces were collected. Mass balance of radioactivity, the pharmacokinetics of abivertinib, and the total radioactivity were determined. Metabolite profiling and characterisation were performed. RESULTS: The mean recovery was 82.16%, with 2.38 and 79.78% of the radioactive dose excreted in urine and faeces, respectively. The unchanged abivertinib was the major radioactive component detected in plasma within the first 24 hours after dosing, accounting for 59.17% of the total drug-related radioactivity. Abivertinib in urine accounted for only 0.96% of the administered dose, whereas in faeces it accounted for 33.36%. Eight metabolites were detected and characterised in plasma, among which MII-7, a product of cysteine glycine conjugate, was the only circulating metabolite, accounting for approximate 10.6% of the total drug-related exposure. MII-2 (an abivertinib cysteine-glycine adduct) and M7 (a reduced product of abivertinib) were the 2 major metabolites in the excreta, accounting for 20.0 and 12.4%, respectively, of the drug-related radioactivity in faeces. CONCLUSION: Following a single oral administration, the unchanged abivertinib was the predominant drug-related material in plasma, urine and faeces. The drug-related materials were primarily eliminated via the faecal route. Direct glutathione conjugation of abivertinib played a significant role in the metabolic clearance and metabolite exposure of abivertinib.