Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 59(7): 2004-2010, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225720

RESUMO

Spectrum-fingerprint anti-counterfeiting fiber with double luminous centers was tentatively prepared using ${{\rm SrAl}_2}{{\rm O}_4}:{{\rm Eu}^{2 + }},{{\rm Dy}^{3 + }}$SrAl2O4:Eu2+,Dy3+, ${{\rm Sr}_2}{{\rm MgSi}_2}{{\rm O}_7}:{{\rm Eu}^{2 + }},{{\rm Dy}^{3 + }}$Sr2MgSi2O7:Eu2+,Dy3+, and PAN powder as main raw materials by wet spinning. The microstructure and spectral properties of the fiber were studied by means of scanning electron microscope (SEM), x-ray diffractometer (XRD), and a fluorescence spectrophotometer. The results showed that the two rare-Earth luminous materials were randomly dispersed on the interior and surface of the fiber. Due to the spinning process, the luminescent materials were agglomerated in fiber, and there were many voids in the fiber. Compared with pure rare-Earth luminous materials, the emission wavelength of the spectrum-fingerprint anti-counterfeiting fiber has no obvious shift, but the addition proportion and amount of two rare-Earth luminous materials have great influence on the spectral curve of the fiber. This fiber with two luminous centers maintains the basic characteristics of spectrum-fingerprint anti-counterfeiting fiber and is a new, to the best of our knowledge, type of anti-counterfeiting fiber with high anti-counterfeiting application potential.

2.
RSC Adv ; 9(5): 2332-2342, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35520534

RESUMO

A novel polyurethane elastomer (PUE) that exhibited high tensile strength, large elongation at break, great color strength and supreme color fastness was successfully designed and synthesized. The PUEs were prepared with isophorone diisocyanate (IPDI) as hard segments, polycarbonate diol (PCDL)/polytetrahydrofuran glycol (PTHF) as mixed soft segments, and anthraquinone chromogen as the chain extender agent. The relationships between the mechanical properties/color performance and chromogen addition content were investigated. The chromogen actual access rate of the obtained BPUEs was evaluated by UV-Vis. The clear tortuous surface and entanglements were exhibited in PUEs micromorphology structure, indicating a significant reinforcement of mechanical properties. Elongation-at-break and tensile strength reached the maximum value 2394% at 1% (BPUE1) and 18.29 MPa at 5% (BPUE5), respectively, and then decreased as chromogen addition content increased. Mechanical testing results correlate well with XRD and SEM findings, which proved that anthraquinone chromogen induced an improvement in phase separation. Furthermore, BPUE films displayed high color strength and excellent color fastnesses. The rubbing fastness and washing fastness of BPUE1 and BPUE0.5 reached grade 5, respectively. These inspiring findings suggest that PUE films with superb performance have potential to be directly applied in the textile field.

3.
Carbohydr Polym ; 150: 107-13, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27312619

RESUMO

A new route to make cotton fabric self-cleaning and permanently stiff by coating cellulose-TiO2 on its surface is demonstrated herein. Cellulose-TiO2 dispersion was used for coating and was prepared by mixing TiO2 nanoparticles with cellulose in 60% H2SO4 solution. The surface morphology of cellulose-TiO2 nanoparticles coated sample was analyzed by SEM. The appearance of white TiO2 particles on the surface of the cotton fabric confirmed the successful coating process. The Orange II dye was used as stain and its degradation was observed under UV light. X-ray diffraction analysis showed that cellulose II content increases slightly (by 5.3%) after the solvent treatment. Washing fastness study showed that the fabric stiffness was permanent and self-cleaning properties were stable with 1, 3 and 5% TiO2 coated samples. Air and water vapor permeability was not decreased considerably, whereas tensile strength was increased significantly after coating.


Assuntos
Celulose/química , Fibra de Algodão , Fenômenos Mecânicos , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Ar , Catálise , Vapor , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa