Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
J Cell Biochem ; 125(5): e30563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591551

RESUMO

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Assuntos
Células Endoteliais , Glucose , Heme Oxigenase-1 , Miócitos de Músculo Liso , Espécies Reativas de Oxigênio , Estresse Mecânico , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Glucose/metabolismo , Glucose/farmacologia , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Proliferação de Células , Técnicas de Cocultura , Ativação Enzimática , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Molécula 1 de Adesão Intercelular/metabolismo
2.
Inorg Chem ; 63(26): 12377-12384, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38902911

RESUMO

Pathogenic bacteria have consistently posed a formidable challenge to human health, creating the critical need for effective antibacterial solutions. In response, enzyme-metal-organic framework (MOF) composites have emerged as a promising class of antibacterial agents. This study focuses on the development of an enzyme-MOF composite based on HZIF-8, incorporating the advantages of simple synthesis, ZIF-8 antibacterial properties, lysozyme hydrolysis, and high biological safety. Through a one-pot method, core-shell nanoparticles (HZIF-8) were synthesized. This structure enables efficient immobilization of lysozyme and lactoferrin within the HZIF-8, resulting in the formation of the lysozyme-lactoferrin@HZIF-8 (LYZ-LF@HZIF-8) composite. Upon exposure to light irradiation, HZIF-8 itself possessed antibacterial properties. Lysozyme initiated the degradation of bacterial peptidoglycan and lactoferrin synergistically enhanced the antibacterial effect of lysozyme. All of the above ultimately contributed to comprehensive antibacterial activity. Antibacterial assessments demonstrated the efficacy of the LYZ-LF@HZIF-8 composite, effectively eradicating Staphylococcus aureus at a cell density of 1.5 × 106 CFU/mL with a low dosage of 200 µg/mL and completely inactivating Escherichia coli at 400 µg/mL with the same cell density. The enzyme-MOF composite exhibited significant and durable antibacterial efficacy, with no apparent cytotoxicity in vitro, thereby unveiling expansive prospects for applications in the medical and food industries.


Assuntos
Antibacterianos , Escherichia coli , Lactoferrina , Estruturas Metalorgânicas , Testes de Sensibilidade Microbiana , Muramidase , Staphylococcus aureus , Zeolitas , Muramidase/farmacologia , Muramidase/química , Muramidase/metabolismo , Lactoferrina/química , Lactoferrina/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Zeolitas/química , Zeolitas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Porosidade , Propriedades de Superfície , Tamanho da Partícula , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia
3.
Anal Chem ; 95(17): 6871-6878, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37080900

RESUMO

In this study, a rapid diagnosis platform was developed for the detection of Escherichia coli O157:H7. An electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET) as a point-of-care testing device is demonstrated with its high sensitivity, portability, high selectivity, quick response, and ease of use. The specially designed ssDNA probe was immobilized on the extended gate electrode to bind the target complementary DNA segment of E. coli, resulting in a sharp drain current change within minutes. The limit of detection for target DNA is validated to a concentration of 1 fM in buffer solution and serum. Meanwhile, the results of a Kelvin probe force microscope were shown to have reduced surface potential of the DNA immobilized sensors before and after the cDNA detection, which is consistent with the decreased drain current of the BioFET. A 1.2 kb E. coli duplex DNA synthesized in plasmid was sonicated and detected in serum samples with the sensor array. Gel electrophoresis was used to confirm the efficiency of sonication by elucidating the length of DNA. Those results show that the EDL-gated BioFET system is a promising platform for rapid identification of pathogens for future clinical needs.


Assuntos
Técnicas Biossensoriais , Infecções por Escherichia coli , Escherichia coli O157 , Humanos , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples , Eletrodos , Escherichia coli O157/genética , DNA Bacteriano/genética
4.
Inorg Chem ; 62(34): 13892-13901, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37587720

RESUMO

Antibacterial photodynamic therapy (aPDT) is regarded as one of the most promising antibacterial therapies due to its nonresistance, noninvasion, and rapid sterilization. However, the development of antibacterial materials with high aPDT efficacy is still a long-standing challenge. Herein, we develop an effective antibacterial photodynamic composite UiO-66-(SH)2@TCPP@AgNPs by Ag encapsulation and 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP) dopant. Through a mix-and-match strategy in the self-assembly process, 2,5-dimercaptoterephthalic acid containing -SH groups and TCPP were uniformly decorated into the UiO-66-type framework to form UiO-66-(SH)2@TCPP. After Ag(I) impregnation and in situ UV light reduction, Ag NPs were formed and encapsulated into UiO-66-(SH)2@TCPP to get UiO-66-(SH)2@TCPP@AgNPs. In the resulting composite, both Ag NPs and TCPP can effectively enhance the visible light absorption, largely boosting the generation efficiency of reactive oxygen species. Notably, the nanoscale size enables it to effectively contact and be endocytosed into bacteria. Consequently, UiO-66-(SH)2@TCPP@AgNPs show a very high aPDT efficacy against Gram-negative and Gram-positive bacteria as well as drug-resistant bacteria (MRSA). Furthermore, the Ag NPs were firmly anchored at the framework by the high density of -SH moieties, avoiding the cytotoxicity caused by the leakage of Ag NPs. By in vitro experiments, UiO-66-(SH)2@TCPP@AgNPs show a very high antibacterial activity and good biocompatibility as well as the potentiality to promote cell proliferation.


Assuntos
Fotoquimioterapia , Porfirinas , Luz , Antibacterianos/farmacologia , Porfirinas/farmacologia
5.
J Pediatr Gastroenterol Nutr ; 76(4): 418-423, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946999

RESUMO

OBJECTIVES: Timely diagnosis is a critical challenge and is associated with improved survival of biliary atresia (BA) patients. We aimed to measure matrix metalloproteinase-7 (MMP-7) levels in BA patients within 3 days of birth using the dried blood spot (DBS) method and evaluate its potential as a screening tool. METHODS: The study enrolled 132 patients, including 25 patients diagnosed with BA and 107 non-BA patients with other congenital or perinatal conditions from the National Taiwan University Children Hospital. The stored DBS samples collected from 48 to 72 hours of life were retrieved from newborn screening centers. MMP-7 on the DBS was quantified using a sensitive sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS: The MMP-7 levels of BA patients on the DBS were significantly higher than those of non-BA patients (19.2 ± 10.4 vs 5.6 ± 2.7 ng/mL, P value < 0.0001). MMP-7 levels in non-BA patients, including 5 patients with hepatobiliary structural anomaly, 9 patients with intrahepatic cholestasis, and 93 patients with other perinatal diseases, were 11.6 ± 4.2 ng/mL, 6.9 ± 3.0 ng/mL, and 5.2 ± 2.1 ng/mL, respectively. The DBS MMP-7 level showed good accuracy for identifying BA, with an area under the curve of 93.7% [95% confidence interval (CI): 87.7%-99.7%]. The MMP-7 cutoff at 8.0 ng/mL showed a sensitivity of 92.0% (95% CI: 75.0%-98.6%) and specificity of 92.5% (95% CI: 85.9%-96.1%) for detecting BA from other congenital or perinatal diseases. CONCLUSIONS: MMP-7 DBS analysis can be used to distinguish BA from other conditions as early as 3 days of age.


Assuntos
Atresia Biliar , Colestase Intra-Hepática , Recém-Nascido , Criança , Humanos , Atresia Biliar/diagnóstico , Metaloproteinase 7 da Matriz , Projetos Piloto , Triagem Neonatal
6.
Sheng Li Xue Bao ; 75(4): 575-586, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37583045

RESUMO

Obstructive sleep apnea syndrome (OSAS), a prevalent sleep disorder in children, is characterized by recurring upper airway obstruction during sleep. OSAS in children can cause intermittent hypoxia and sleep fragmentation, ultimately affect brain development and further lead to cognitive impairment if lack of timely effective intervention. In recent years, magnetic resonance imaging (MRI) and electroencephalogram (EEG) have been employed to investigate brain structure and function abnormalities in children with OSAS. Previous studies have indicated that children with OSAS showed extensive gray and white matter damage, abnormal brain function in regions such as the frontal lobe and hippocampus, as well as a significant decline in general cognitive function and executive function. However, the existing studies mainly focused on the regional activity, and the mechanism of pediatric OSAS affecting brain networks remains unknown. Moreover, it's unclear whether the alterations in brain structure and function are associated with their cognitive impairment. In this review article, we proposed two future research directions: 1) future studies should utilize the multimodal neuroimaging techniques to reveal the alterations of brain networks organization underlying pediatric OSAS; 2) further investigation is necessary to explore the relationship between brain network alteration and cognitive dysfunction in children with OSAS. With these efforts, it will be promising to identify the neuroimaging biomarkers for monitoring the brain development of children with OSAS as well as aiding its clinical diagnosis, and ultimately develop more effective strategies for intervention, diagnosis, and treatment.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Criança , Apneia Obstrutiva do Sono/complicações , Cognição , Hipóxia/complicações , Hipocampo , Lobo Frontal
7.
Anal Chem ; 94(6): 2679-2685, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919373

RESUMO

Ion channel-modulating drugs play an important role in treating cardiovascular diseases. Facing the demands for continuous monitoring of drug effectiveness, the conventional techniques have become limited when investigating a long-term cellular physiology. To address the challenge, we propose a drug-screening platform using the stretch-out electrical double layer (EDL)-gated field-effect transistor-based biosensors (BioFETs). In this work, BioFETs were utilized to amplify electrophysiological signals from the mammalian cardiomyocytes (H9c2). The stretch-out configuration avoided a chemical corrosion on FETs and prolonged the lifetime of a BioFET system. A physical model is presented to elucidate the signal response to a drug effect on a cell. Fibronectin and gelatin were coated on sensors and served as the adhesive layers where H9c2 cells attached. BioFETs demonstrated an ability to qualitatively distinguish a depolarization and a polarization of the cytomembranes. The signal responses to the changes of transmembrane potentials were monitored in real-time, and they were highly correlated. The effects of nifedipine and calcium ions on cellular electrophysiology were examined and discussed. Due to the capability of a rapid detection, a prolonged lifetime, and an excellent sensitivity to an electrical change, a stretch-out EDL-gated BioFET can be a drug-screening platform for ion channel modulators.


Assuntos
Técnicas Biossensoriais , Animais , Técnicas Biossensoriais/métodos , Canais Iônicos , Íons , Potenciais da Membrana , Transistores Eletrônicos
8.
J Phys Chem A ; 126(49): 9218-9226, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36459565

RESUMO

In this paper, potential energy curves of Λ-S and Ω states of SBr+ are reported for the first time, and the spectrum data of some low excited bound states are obtained. The differences in the spectrum properties of main-group molecules and SBr+ were compared and analyzed, providing a sufficient theoretical basis for the subsequent study of main-group molecules. The avoided crossing that occurs in the Ω state is analyzed, and finally it is concluded that this phenomenon mainly occurs in the energy region between 20,000 and 40,000 cm-1 that is relative to the minimum energy value. Potential transitions in the Ω state capable of achieving laser cooling of SBr+ are explored. The Franck-Condon factor, radiation lifetime, and Einstein coefficient between X3Σ0+- and b1Σ0++ are calculated. From the calculation results, we concluded that direct laser cooling of SBr+ is not feasible. What we have studied in this paper provides a theoretical basis for subsequent computational exploration of the spectrum properties of SBr+.

9.
Sens Actuators B Chem ; 357: 131415, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35043033

RESUMO

Facing the unstopped surges of COVID-19, an insufficient capacity of diagnostic testing jeopardizes the control of disease spread. Due to a centralized setting and a long turnaround, real-time reverse transcription polymerase chain reaction (real-time RT-PCR), the gold standard of viral detection, has fallen short in timely reflecting the epidemic status quo during an urgent outbreak. As such, a rapid screening tool is necessitated to help contain the spread of COVID-19 amid the countries where the vaccine implementations have not been widely deployed. In this work, we propose a saliva-based COVID-19 antigen test using the electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET). The detection of SARS-CoV-2 nucleocapsid (N) protein is validated with limits of detection (LoDs) of 0.34 ng/mL (7.44 pM) and 0.14 ng/mL (2.96 pM) in 1× PBS and artificial saliva, respectively. The specificity is inspected with types of antigens, exhibiting low cross-reactivity among MERS-CoV, Influenza A virus, and Influenza B virus. This portable system is embedded with Bluetooth communication and user-friendly interfaces that are fully compatible with digital health, feasibly leading to an on-site turnaround, an effective management, and a proactive response taken by medical providers and frontline health workers.

10.
Biomed Chromatogr ; 36(4): e5329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997600

RESUMO

Fuzheng Huayu recipe (FZHY) is a Chinese patent medicine for the treatment of liver fibrosis. This study aimed to investigate the toxicokinetics of FZHY in beagle dogs after oral administration. Blood samples were collected on days 1, 15 and 28 after oral gavage of FZHY dosages of 400 or 1,200 mg/kg body weight once a day. A UHPLC-Q-Orbitrap method was developed and validated to simultaneously determine and quantify eight components of FZHY in beagle dog plasma. The times to peak concentration for eight components were18-120 min. The peak concentrations (Cmax ) of amygdalin, genistein, daidzein and 3,4-dihydroxybenzaldehyde were 1.43-43.50 ng/ml, the areas under the concentration-time curve (AUC(0-t) ) were 2.45-6,098.25 ng min/ml, and the apparent volumes of distribution (Vd ) were 0.05-131.23 × 104 ml/kg. The values of Cmax of prunasin, schisantherin A, schisandrin A and schisandrin were 7.35-1,450.73 ng/ml, the values of AUC(0-t) were 3,642.30-330,388.65 ng min/ml, and the values of Vd were 11.15-1,087.18 × 104 ml/kg. No obvious accumulation of the eight compounds was observed in beagle dogs. The results showed that the method is rapid, accurate and sensitive, and is suitable for detecting the eight analytes of FZHY. This study provides an important basis for the assessment of FZHY safety.


Assuntos
Medicamentos de Ervas Chinesas , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cães , Medicamentos de Ervas Chinesas/farmacocinética , Ratos , Ratos Wistar , Toxicocinética
11.
Anal Chem ; 93(22): 8099-8106, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047190

RESUMO

As the occurrence of Alzheimer's disease (AD) has increased, the detection and treatment of AD have become global social issues. Effective early detection and wide-range screening of AD allow patients to gain early control and delay brain degeneration. For these reasons, we choose electrochemical sensors to complete the detection task. Although bio-electrochemical technology for antibody and antigen sensing is not a new technology, considering the scarcity of tear samples for dementia and since the existing AD detection techniques are highly invasive and expensive for subjects, we have to use the traditional detection techniques for the early screening of Alzheimer's disease via trace-amount specimens. An AD-related protein in the eye is thought to be an important biomarker for early detection. To carry out detection using tear samples as a test specimens, a tear collection device was developed in this study that extracted 10 µL of tear fluid from a tear Schirmer strip. In this research, we distinguished healthy people in different age groups and detect Aß in both tear and blood samples. We developed a biosensor, which could detect Aß in tear specimen from 1 to 100 pg/mL. Also, this biosensor is inexpensive, disposable, and easy to use. In our result, the concentration of Aß in tears was approximately 10 times more than that in blood. This study demonstrates the feasibility and prospects of future screening for AD-associated biomarkers by a dynamic comparison between blood and tears.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Lágrimas
12.
J Formos Med Assoc ; 120(1 Pt 1): 83-92, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32863084

RESUMO

The COronaVIrus Disease 2019 (COVID-19), which developed into a pandemic in 2020, has become a major healthcare challenge for governments and healthcare workers worldwide. Despite several medical treatment protocols having been established, a comprehensive rehabilitation program that can promote functional recovery is still frequently ignored. An online consensus meeting of an expert panel comprising members of the Taiwan Academy of Cardiovascular and Pulmonary Rehabilitation was held to provide recommendations for rehabilitation protocols in each of the five COVID-19 stages, namely (1) outpatients with mild disease and no risk factors, (2) outpatients with mild disease and epidemiological risk factors, (3) hospitalized patients with moderate to severe disease, (4) ventilator-supported patients with clear cognitive function, and (5) ventilator-supported patients with impaired cognitive function. Apart from medications and life support care, a proper rehabilitation protocol that facilitates recovery from COVID-19 needs to be established and emphasized in clinical practice.


Assuntos
COVID-19 , Protocolos Clínicos/normas , Controle de Infecções , Reabilitação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/reabilitação , Consenso , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Recuperação de Função Fisiológica , Reabilitação/métodos , Reabilitação/normas , SARS-CoV-2/isolamento & purificação , Taiwan
13.
Zhongguo Zhong Yao Za Zhi ; 46(2): 306-311, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645116

RESUMO

Liver is the main place of drug metabolism. Mitochondria of hepatocytes are important targets of drug-induced liver injury. Mitochondrial autophagy could maintain the healthy operation of mitochondria in cells and the stable proliferation of cells. Therefore, the use of mitochondrial autophagy to remove damaged mitochondria is an important strategy of anti-drug-induced liver injury. Active ingredients that could enhance mitochondrial autophagy are contained in many traditional Chinese medicines, which could regulate the mitochondrial autophagy to alleviate relevant diseases. However, there are only a few reports on how to accurately and efficiently identify and evaluate such components targeting mitochondria from traditional Chinese medicine. Liquid chromatography-mass spectro-metry(LC-MS) combined with serum pharmacology in vivo can be used to accurately and efficiently find active ingredients of traditional Chinese medicine acting on mitochondrial targets. This paper reviewed the research ideas and methods of traditional Chinese medicine ingredients for increasing the hepatotoxicity of mitochondrial autophagy, in order to provide new ideas and methods for the study of active ingredients of traditional Chinese medicine targeting mitochondria.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/toxicidade , Humanos , Medicina Tradicional Chinesa , Mitocôndrias
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1267-1270, 2021 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34911611

RESUMO

OBJECTIVES: To study the epidemiological and clinical features of children with coronavirus disease 2019 (COVID-19) caused by Delta variant infection and their differences from children with ordinary COVID-19 (non-Delta variant infection). METHODS: Eleven children aged <14 years, who were diagnosed with COVID-19 caused by Delta variant infection from August to September 2021 were enrolled (variant group). Five children aged <14 years who were diagnosed with ordinary COVID-19 from February to March 2020 served as the control group. The epidemiological data, clinical features, and laboratory examination results were compared between the two groups. RESULTS: There was no significant difference in the proportion of children with clinical symptoms between the two groups (P>0.05). There were no significant differences in white blood cell count, lymphocyte count, and platelet count between the two groups (P>0.05), while the variant group had a lower neutrophil count than the control group (P<0.05). Lymphocytopenia was not observed in either group. Compared with the control group, the variant group had a higher proportion of children with an increase in creatine kinase isoenzyme (P<0.05), while there were no significant differences in the proportion of children with an increase in lactate dehydrogenase, D-Dimer, C-reactive protein or interleukin-6 between the two groups (P>0.05). Among the 9 children in the variant group, 5 tested positive for IgM antibody at week 2 after admission, and all children tested positive for IgG antibody. At week 3 after admission, the level of IgM antibody tended to decrease in 9 children, and the level of IgG antibody tended to decrease in 8 children. CONCLUSIONS: Delta variant is more infectious. COVID-19 caused by Delta variant infection may cause more serious myocardial damage than ordinary COVID-19 in children. In children infected with Delta variant, IgG antibody appears at almost the same time as IgM antibody.


Assuntos
COVID-19 , Hospitalização , Humanos , Imunoglobulina G , Estudos Retrospectivos , SARS-CoV-2
15.
Med Sci Monit ; 26: e924411, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886655

RESUMO

BACKGROUND An innovative animal running wheel with an individualized design was implemented for the rehabilitation of rats following ischemic stroke. MATERIAL AND METHODS The design of the running wheel platform included the running wheel and a side plate for exercise area adjustments. A U-curve with a width of 2 cm was drawn on the lower half of the side plate for the dynamic adjustments of five infrared (IR) sensors based on the physical fitness of the rats. The individualized training process for this running wheel consisted of 2 days of free training to record their average and maximum speeds, 3 days of progressive training to determine their exercise areas, and 2 weeks of normal training based on their average speeds, maximum speeds, and exercise areas. Blood samples were obtained from the tail veins of all rats before the operations and on Days 14, 21, and 28 postsurgery to measure cortisol levels. The motor function tests were performed on Days 7 and 28 postsurgery. On Day 28 postsurgery, the rats were sacrificed under anesthesia, and their brains were removed for Nissl and H&E staining. RESULTS On Day 28 after surgery, the motor function, lesion volume, and cell damage of the DEARW and control groups differed significantly, indicating that this device is effective for stroke rehabilitation. CONCLUSIONS The outcomes of the rats that were rehabilitated using the newly designed training system were better than those of their control-group counterparts, indicating the advantages of this designed system.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Condicionamento Físico Animal/instrumentação , Reabilitação do Acidente Vascular Cerebral , Animais , Masculino , Ratos , Ratos Sprague-Dawley
16.
Anal Chem ; 91(9): 5953-5960, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994326

RESUMO

We have developed a swift and simplistic protein immunoassay using aptamer functionalized AlGaN/GaN high electron mobility transistors (HEMTs). The unique design of the sensor facilitates protein detection in a physiological salt environment overcoming charge screening effects, without requiring sample preprocessing. This study reports a tunable and amplified sensitivity of solution-gated electric double layer (EDL) HEMT-based biosensors, which demonstrates significantly enhanced sensitivity by designing a smaller gap between the gate electrode and the detection, and by operating at higher gate voltage. Sensitivity is calculated by quantifying NT-proBNP, a clinical biomarker of heart failure, in buffer and untreated human serum samples. The biosensor depicts elevated sensitivity and high selectivity. Furthermore, detailed investigation of the amplified sensitivity in an increased ionic strength environment is conducted, and it is revealed that a high sensitivity of 80.54 mV/decade protein concentration can be achieved, which is much higher than that of previously reported FET biosensors. This sensor technology demonstrates immense potential in developing surface affinity sensors for clinical diagnostics.


Assuntos
Compostos de Alumínio/química , Técnicas Biossensoriais/métodos , Elétrons , Gálio/química , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Transistores Eletrônicos , Aptâmeros de Nucleotídeos/química , Biomarcadores/análise , Humanos , Peptídeo Natriurético Encefálico/química , Fragmentos de Peptídeos/química
17.
Int J Med Sci ; 16(5): 675-685, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31217735

RESUMO

Background: Exercise preconditioning (EP+) is a useful and important procedure for the prevention of stroke. We aimed to ascertain whether EP+ protects against ischemic brain injury by preserving heat shock protein (HSP) 72-containing neurons in ischemic brain tissues. Methods: Adult male Sprague-Dawley rats (n=240) were used to assess the contribution of HSP72-containing neurons to the neuroprotective effects of EP+ on ischemic brain injury caused by transient middle cerebral artery occlusion. Results: Significant (P<0.05) increases in the percentages of both old HSP72-containing neurons (NeuN+HSP72 double positive cells) (18~20% vs. 40~50%) and newly formed HSP72-containing neurons (BrdU+NeuN+HSP72 triple positive cells); (2~3% vs. 16~20%) after 3 weeks of exercise coincided with significant (P<0.05) reductions in brain ischemia volume (250 mm3 vs. 100 mm3), brain edema (78% vs. 74% brain water content), blood-brain barrier disruption (1.5 µg/g vs. 0.7 µg/g tissue Evans Blue dye extravasation) and neurological motor deficits (neurological severity scores of 12 vs. 6 and maximal angles of 60° vs. 20°) in brain ischemia rats. Reductions in the percentages of both old (from 40~50% to 10~12%) and newly formed (from 18~20% to 5~7%) HSP72-containing neurons by gene silencing with an intracerebral injection of pSUPER small interfering RNA showed a significant (P<0.05) reversal in the neuroprotective outcomes. Our data provide an inverse correlation between the EP+-mediated increases in both old and newly formed HSP72-containing neurons and the extent of cerebral ischemic injury. Conclusions: The percentages of both old and newly formed HSP72-containing neurons are inversely correlated with the outcomes of ischemic brain injury. Additionally, preischemic treadmill exercise improves the outcomes of ischemic brain injury by preserving both the old and newly formed HSP72-containing neurons in rats.


Assuntos
Lesões Encefálicas/terapia , Isquemia Encefálica/terapia , Proteínas de Choque Térmico HSP72/genética , Condicionamento Físico Animal , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Isquemia Encefálica/etiologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores , Ratos , Ratos Sprague-Dawley
18.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035499

RESUMO

Chromium, one of the top five toxic heavy metals ranked according to significance in public health by WHO, exists as Cr(III) which is naturally occurring or Cr(VI) which is anthropogenic in origin. The EPA specifies the maximum contaminant level in drinking water to be 10-6 M or 0.1 mg/L or 100 ppb for the total dissolved Cr. To ensure the water consumed by the population has these pollutants below the safe threshold, this report demonstrates a field effect transistor (FET) based sensor design incorporating a highly target specific ion-selective membrane combined with extended gate technology which manifests sensitivity exceeding the Nernst limit aided by the high field effect in the short gap region of extended gate technology. Characterization and repeated testing of the portable device revealed a commendable calibration sensitivity of 99 mV/log [Cr3+] and 71 mV/log [Cr6+] for Cr(III) and Cr(VI) respectively, well surpassing the Nernst limits of sensitivity and offering a detection limit lower than ion-selective electrodes (10-6 M), and comparable to the expensive benchtop laboratory instrument, ICP-MS. This report presents a robust, easy to fabricate, economic and efficient handheld biosensor to detect the chromium in a liquid sample whether it exists as Cr(III) or Cr(VI).

19.
Sensors (Basel) ; 19(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086067

RESUMO

Mercury ion selective membrane (Hg-ISM) coated extended gate Field Effect transistors (ISM-FET) were used to manifest a novel methodology for ion-selective sensors based on FET's, creating ultra-high sensitivity (-36 mV/log [Hg2+]) and outweighing ideal Nernst sensitivity limit (-29.58 mV/log [Hg2+]) for mercury ion. This highly enhanced sensitivity compared with the ion-selective electrode (ISE) (10-7 M) has reduced the limit of detection (10-13 M) of Hg2+ concentration's magnitude to considerable orders irrespective of the pH of the test solution. Systematical investigation was carried out by modulating sensor design and bias voltage, revealing that higher sensitivity and a lower detection limit can be attained in an adequately stronger electric field. Our sensor has a limit of detection of 10-13 M which is two orders lower than Inductively Coupled Plasma Mass Spectrometry (ICP-MS), having a limit of detection of 10-11 M. The sensitivity and detection limit do not have axiomatic changes under the presence of high concentrations of interfering ions. The technology offers economic and consumer friendly water quality monitoring options intended for homes, offices and industries.

20.
Sensors (Basel) ; 19(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934691

RESUMO

In this research, we developed a miRNA sensor using an electrical double layer (EDL) gated field-effect transistor (FET)-based biosensor with enhanced sensitivity and stability. We conducted an in-depth investigation of the mechanisms that give rise to fluctuations in the electrical signal, affecting the stability and sensitivity of the miRNA sensor. Firstly, surface characteristics were studied by examining the metal electrodes deposited using different metal deposition techniques. The lower surface roughness of the gold electrode improved the electrical current stability. The temperature and viscosity of the sample solution were proven to affect the electrical stability, which was attributed to reducing the effect of Brownian motion. Therefore, by controlling the test conditions, such as temperature and sample viscosity, and the surface characteristics of the metal electrodes, we can enhance the stability of the sensor. Metal electrodes deposited via sputtering and e-beam evaporator yielded the lowest signal fluctuation. When ambient temperature was reduced to 3 °C, the sensor had better noise characteristics compared to room temperature testing. Higher viscosity of samples resulted in lower signal fluctuations. Lastly, surface functionalization was demonstrated to be a critical factor in enhancing the stability and sensitivity. MiRNA sensors with higher surface ratios of immobilized DNA probes performed with higher sensitivity and stability. This study reveals methods to improve the characteristics of EDL FET biosensors to facilitate practical implementation in clinical applications.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/análise , Transistores Eletrônicos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/instrumentação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Condutividade Elétrica , Eletrodos , Ouro/química , MicroRNAs/metabolismo , Hibridização de Ácido Nucleico , Polímeros/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa