Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
BMC Physiol ; 18(1): 1, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29368643

RESUMO

BACKGROUND: Claudins are major components of tight junctions, which form the paracellular barrier between the cochlear luminal and abluminal fluid compartments that supports the large transepithelial voltage difference and the large concentration differences of K+, Na+ and Ca2+ needed for normal cochlear function. Claudins are a family of more than 20 subtypes, but our knowledge about expression and localization of each subtype in the cochlea is limited. RESULTS: We examined by quantitative RT-PCR the expression of the mRNA of 24 claudin isoforms in mouse cochlea during postnatal development and localized the expression in separated fractions of the cochlea. Transcripts of 21 claudin isoforms were detected at all ages, while 3 isoforms (Cldn-16, - 17 and - 18) were not detected. Claudins that increased expression during development include Cldn-9, - 13, - 14, - 15, and -19v2, while Cldn-6 decreased. Those that do not change expression level during postnatal development include Cldn-1, - 2, - 3, - 4, - 5, - 7, - 8, -10v1, -10v2, - 11, - 12, -19v1, - 20, - 22, and - 23. Our investigation revealed unique localization of some claudins. In particular, Cldn-13 expression rapidly increases during early development and is mainly expressed in bone but only minimally in the lateral wall (including stria vascularis) and in the medial region (including the organ of Corti). No statistically significant changes in expression of Cldn-11, - 13, or - 14 were found in the cochlea of Slc26a4 -/- mice compared to Slc26a4 +/- mice. CONCLUSIONS: We demonstrated developmental patterns of claudin isoform transcript expression in the murine cochlea. Most of the claudins were associated with stria vascularis and organ of Corti, tissue fractions rich in tight junctions. However, this study suggests a novel function of Cldn-13 in the cochlea, which may be linked to cochlear bone marrow maturation.


Assuntos
Claudinas/metabolismo , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Feminino , Masculino , Camundongos Knockout , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Transportadores de Sulfato
2.
Hum Mol Genet ; 24(3): 609-24, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25217574

RESUMO

In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs.


Assuntos
Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/patologia , Receptores de Superfície Celular/genética , Junções Íntimas/patologia , Animais , Modelos Animais de Doenças , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Humanos , Proteína 2 com Domínio MARVEL/metabolismo , Camundongos , Mutação , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo
3.
Nephrol Dial Transplant ; 32(7): 1137-1145, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28064162

RESUMO

BACKGROUND: Pendrin, the chloride/bicarbonate exchanger of ß-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. METHODS: Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. RESULTS: We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. CONCLUSION: By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Pressão Sanguínea/fisiologia , Hipertensão/etiologia , Animais , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Sulfato
4.
BMC Physiol ; 16(1): 6, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27806708

RESUMO

BACKGROUND: In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels. METHODS: SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed. RESULTS: Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O. CONCLUSIONS: The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.


Assuntos
Sinalização do Cálcio , Cóclea/irrigação sanguínea , Cóclea/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Rianodina/administração & dosagem , Vasoconstrição , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Endotelina-1/administração & dosagem , Feminino , Gerbillinae , Músculo Liso Vascular/irrigação sanguínea , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Vasoconstrição/efeitos dos fármacos
5.
BMC Physiol ; 17(1): 1, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515813

RESUMO

BACKGROUND: Disturbance of acid-base balance in the inner ear is known to be associated with hearing loss in a number of conditions including genetic mutations and pharmacologic interventions. Several previous physiologic and immunohistochemical observations lead to proposals of the involvement of acid-base transporters in stria vascularis. RESULTS: We directly measured acid flux in vitro from the apical side of isolated stria vascularis from adult C57Bl/6 mice with a novel constant-perfusion pH-selective self-referencing probe. Acid efflux that depended on metabolism and ion transport was observed from the apical side of stria vascularis. The acid flux was decreased to about 40 % of control by removal of the metabolic substrate (glucose-free) and by inhibition of the sodium pump (ouabain). The flux was also decreased a) by inhibition of Na,H-exchangers by amiloride, dimethylamiloride (DMA), S3226 and Hoe694, b) by inhibition of Na,2Cl,K-cotransporter (NKCC1) by bumetanide, and c) by the likely inhibition of HCO3/anion exchange by DIDS. By contrast, the acid flux was increased by inhibition of gastric H,K-ATPase (SCH28080) but was not affected by an inhibitor of vH-ATPase (bafilomycin).  K flux from stria vascularis was reduced less than 5 % by SCH28080. CONCLUSIONS: These observations suggest that stria vascularis may be an important site of control of cochlear acid-base balance and demonstrate a functional role of several acid-base transporters in stria vascularis, including basolateral H,K-ATPase and apical Na,H-exchange. Previous suggestions that H secretion is mediated by an apical vH-ATPase and that basolateral H,K-ATPase contributes importantly to K secretion in stria vascularis are not supported. These results advance our understanding of inner ear acid-base balance and provide a stronger basis to interpret the etiology of genetic and pharmacologic cochlear dysfunctions that are influenced by endolymphatic pH.


Assuntos
Equilíbrio Ácido-Base , Endolinfa/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Estria Vascular/metabolismo , Animais , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Estria Vascular/enzimologia
6.
PLoS Genet ; 9(7): e1003641, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874234

RESUMO

Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 (Δ/Δ) mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 (Δ/Δ) line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.


Assuntos
Orelha Interna/metabolismo , Saco Endolinfático/metabolismo , Perda Auditiva/genética , Proteínas de Membrana Transportadoras/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Orelha Interna/patologia , Endolinfa/metabolismo , Saco Endolinfático/patologia , Feminino , Perda Auditiva/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Gravidez , Transportadores de Sulfato , ATPases Vacuolares Próton-Translocadoras/genética , Aqueduto Vestibular/metabolismo , Aqueduto Vestibular/fisiopatologia
7.
Bioorg Med Chem ; 23(17): 5985-98, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26190460

RESUMO

A class of tetracyclic terpenes was synthesized and evaluated for antagonistic activity of endothelin-1 (ET-1) induced vasoconstriction and inhibitory activity of voltage-activated Ca(2+) channels. Three repeated Robinson annulation reactions were utilized to construct the tetracyclic molecules. A stereoselective reductive Robinson annulation was discovered for the formation of optically pure tricyclic terpenes. Stereoselective addition of cyanide to the hindered α-face of tetracyclic enone (-)-18 was found and subsequent transformation into the aldehyde function was affected by the formation of bicyclic hemiiminal (-)-4. Six selected synthetic tetracyclic terpenes show inhibitory activities in ET-1 induced vasoconstriction in the gerbil spiral modiolar artery with putative affinity constants ranging between 93 and 319 nM. Moreover, one compound, (-)-3, was evaluated further and found to inhibit voltage-activated Ca(2+) currents but not to affect Na(+) or K(+) currents in dorsal root ganglion cells under similar concentrations. These observations imply a dual mechanism of action. In conclusion, tetracyclic terpenes represent a new class of hit molecules for the discovery of new drugs for the treatment of pulmonary hypertension and vascular related diseases.


Assuntos
Canais de Cálcio/química , Hipertensão Pulmonar/terapia , Receptor de Endotelina A/química , Terpenos/química , Terpenos/síntese química , Estrutura Molecular
8.
Neurobiol Dis ; 66: 53-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561068

RESUMO

SLC26A4 mutations can cause a distinctive hearing loss phenotype with sudden drops and fluctuation in patients. Existing Slc26a4 mutant mouse lines have a profound loss of hearing and vestibular function, with severe inner ear malformations that do not model this human phenotype. In this study, we generated Slc26a4-insufficient mice by manipulation of doxycycline administration to a transgenic mouse line in which all Slc26a4 expression was under the control of doxycycline. Doxycycline was administered from conception to embryonic day 17.5, and then it was discontinued. Auditory brainstem response thresholds showed significant fluctuation of hearing loss from 1 through 3months of age. The endocochlear potential, which is required for inner ear sensory cell function, correlated with auditory brainstem response thresholds. We observed degeneration of stria vascularis intermediate cells, the cells that generate the endocochlear potential, but no other abnormalities within the cochlea. We conclude that fluctuations of hearing result from fluctuations of the endocochlear potential and stria vascularis dysfunction in Slc26a4-insufficient mouse ears. This model can now be used to test potential interventions to reduce or prevent sudden hearing loss or fluctuation in human patients. Our strategy to generate a hypomorphic mouse model utilizing the tet-on system will be applicable to other diseases in which a hypomorphic allele is needed to model the human phenotype.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Perda Auditiva/fisiopatologia , Estria Vascular/fisiologia , Animais , Proteínas de Transporte de Ânions/genética , Limiar Auditivo , Cóclea/patologia , Cóclea/fisiopatologia , Doxiciclina , Potenciais Evocados Auditivos do Tronco Encefálico , Expressão Gênica , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/patologia , Imuno-Histoquímica , Macrófagos/patologia , Macrófagos/fisiologia , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Emissões Otoacústicas Espontâneas , Reação em Cadeia da Polimerase em Tempo Real , Estria Vascular/patologia , Transportadores de Sulfato
9.
Cell Physiol Biochem ; 32(7): 157-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24429822

RESUMO

The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA) and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Cóclea/metabolismo , Doenças Cocleares/metabolismo , Doenças Vestibulares/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Cóclea/patologia , Doenças Cocleares/genética , Doenças Cocleares/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Transportadores de Sulfato , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Testes de Função Vestibular
10.
Am J Hum Genet ; 84(5): 651-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19426954

RESUMO

Mutations in SLC26A4 cause nonsyndromic hearing loss associated with an enlarged vestibular aqueduct (EVA, also known as DFNB4) and Pendred syndrome (PS), the most common type of autosomal-recessive syndromic deafness. In many patients with an EVA/PS phenotype, mutation screening of SLC26A4 fails to identify two disease-causing allele variants. That a sizable fraction of patients carry only one SLC26A4 mutation suggests that EVA/PS is a complex disease involving other genetic factors. Here, we show that mutations in the inwardly rectifying K(+) channel gene KCNJ10 are associated with nonsyndromic hearing loss in carriers of SLC26A4 mutations with an EVA/PS phenotype. In probands from two families, we identified double heterozygosity in affected individuals. These persons carried single mutations in both SLC26A4 and KCNJ10. The identified SLC26A4 mutations have been previously implicated in EVA/PS, and the KCNJ10 mutations reduce K(+) conductance activity, which is critical for generating and maintaining the endocochlear potential. In addition, we show that haploinsufficiency of Slc26a4 in the Slc26a4(+/-) mouse mutant results in reduced protein expression of Kcnj10 in the stria vascularis of the inner ear. Our results link KCNJ10 mutations with EVA/PS and provide further support for the model of EVA/PS as a multigenic complex disease.


Assuntos
Proteínas de Transporte de Ânions/genética , Perda Auditiva/genética , Proteínas de Membrana Transportadoras/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Doenças da Glândula Tireoide/genética , Aqueduto Vestibular/anormalidades , Animais , Proteínas de Transporte de Ânions/fisiologia , Feminino , Heterozigoto , Humanos , Técnicas In Vitro , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Camundongos Mutantes , Mutação , Oócitos/fisiologia , Técnicas de Patch-Clamp , Linhagem , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Estria Vascular/metabolismo , Transportadores de Sulfato , Xenopus
11.
PLoS Genet ; 5(8): e1000610, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696885

RESUMO

Hereditary hearing loss is one of the most common birth defects, yet the majority of genes required for audition is thought to remain unidentified. Ethylnitrosourea (ENU)-mutagenesis has been a valuable approach for generating new animal models of deafness and discovering previously unrecognized gene functions. Here we report on the characterization of a new ENU-induced mouse mutant (nmf329) that exhibits recessively inherited deafness. We found a widespread loss of sensory hair cells in the hearing organs of nmf329 mice after the second week of life. Positional cloning revealed that the nmf329 strain carries a missense mutation in the claudin-9 gene, which encodes a tight junction protein with unknown biological function. In an epithelial cell line, heterologous expression of wild-type claudin-9 reduced the paracellular permeability to Na+ and K+, and the nmf329 mutation eliminated this ion barrier function without affecting the plasma membrane localization of claudin-9. In the nmf329 mouse line, the perilymphatic K+ concentration was found to be elevated, suggesting that the cochlear tight junctions were dysfunctional. Furthermore, the hair-cell loss in the claudin-9-defective cochlea was rescued in vitro when the explanted hearing organs were cultured in a low-K+ milieu and in vivo when the endocochlear K+-driving force was diminished by deletion of the pou3f4 gene. Overall, our data indicate that claudin-9 is required for the preservation of sensory cells in the hearing organ because claudin-9-defective tight junctions fail to shield the basolateral side of hair cells from the K+-rich endolymph. In the tight-junction complexes of hair cells, claudin-9 is localized specifically to a subdomain that is underneath more apical tight-junction strands formed by other claudins. Thus, the analysis of claudin-9 mutant mice suggests that even the deeper (subapical) tight-junction strands have biologically important ion barrier function.


Assuntos
Perda Auditiva/metabolismo , Íons/metabolismo , Proteínas de Membrana/metabolismo , Junções Íntimas/metabolismo , Animais , Transporte Biológico , Claudinas , Cóclea/química , Cóclea/metabolismo , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/química , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Humanos , Íons/química , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos A , Camundongos Transgênicos , Mutagênese , Permeabilidade , Junções Íntimas/química , Junções Íntimas/genética
12.
Cell Physiol Biochem ; 28(3): 527-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116367

RESUMO

Enlargement of the vestibular aqueduct (EVA) is a common inner ear malformation found in children with sensorineural hearing loss that is frequently associated with loss-of-function or hypo-function mutations of SLC26A4. SLC26A4 codes for pendrin, which is a protein that is expressed in apical membranes of selected epithelia and functions as an anion exchanger. The comparatively high prevalence of EVA provides a strong imperative to develop rational interventions that delay, ameliorate or prevent hearing loss associated with this phenotype. The development of rational interventions requires a fundamental understanding of the role that pendrin plays in the normal development of hearing, as well as a detailed understanding of the pathobiologic mechanisms that, in the absence of fully functional pendrin, lead to an unstable hearing phenotype, with fluctuating or progressive loss of hearing. This review summarizes studies in mouse models that have focused on delineating the role of pendrin in the physiology of the inner ear and the pathobiology that leads to hearing loss.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Orelha Interna/embriologia , Animais , Proteínas de Transporte de Ânions/análise , Ânions/metabolismo , Comunicação Celular , Orelha Interna/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transportadores de Sulfato
13.
Cell Physiol Biochem ; 28(3): 545-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116369

RESUMO

Enlargement of the vestibular aqueduct (EVA) is the most common inner ear anomaly detected in ears of children with sensorineural hearing loss. Pendred syndrome (PS) is an autosomal recessive disorder characterized by bilateral sensorineural hearing loss with EVA and an iodine organification defect that can lead to thyroid goiter. Pendred syndrome is caused by mutations of the SLC26A4 gene. SLC26A4 mutations may also be identified in some patients with nonsyndromic EVA (NSEVA). The presence of two mutant alleles of SLC26A4 is correlated with bilateral EVA and Pendred syndrome, whereas unilateral EVA and NSEVA are correlated with one (M1) or zero (M0) mutant alleles of SLC26A4. Thyroid gland enlargement (goiter) appears to be primarily dependent on the presence of two mutant alleles of SLC26A4 in pediatric patients, but not in older patients. In M1 families, EVA may be associated with a second, undetected SLC26A4 mutation or epigenetic modifications. In M0 families, there is probably etiologic heterogeneity that includes causes other than, or in addition to, monogenic inheritance.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Aqueduto Vestibular/anormalidades , Genótipo , Humanos , Fenótipo , Transportadores de Sulfato
14.
Bioinformatics ; 26(6): 791-7, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20134030

RESUMO

MOTIVATION: Mass spectrometry (MS) has become the method of choice for protein/peptide sequence and modification analysis. The technology employs a two-step approach: ionized peptide precursor masses are detected, selected for fragmentation, and the fragment mass spectra are collected for computational analysis. Current precursor selection schemes are based on data- or information-dependent acquisition (DDA/IDA), where fragmentation mass candidates are selected by intensity and are subsequently included in a dynamic exclusion list to avoid constant refragmentation of highly abundant species. DDA/IDA methods do not exploit valuable information that is contained in the fractional mass of high-accuracy precursor mass measurements delivered by current instrumentation. RESULTS: We extend previous contributions that suggest that fractional mass information allows targeted fragmentation of analytes of interest. We introduce a non-linear Random Forest classification and a discrete mapping approach, which can be trained to discriminate among arbitrary fractional mass patterns for an arbitrary number of classes of analytes. These methods can be used to increase fragmentation efficiency for specific subsets of analytes or to select suitable fragmentation technologies on-the-fly. We show that theoretical generalization error estimates transfer into practical application, and that their quality depends on the accuracy of prior distribution estimate of the analyte classes. The methods are applied to two real-world proteomics datasets. AVAILABILITY: All software used in this study is available from http://software.steenlab.org/fmf CONTACT: hanno.steen@childrens.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Espectrometria de Massas/métodos , Seleção Genética , Proteínas/química , Proteoma/análise , Proteômica/métodos
15.
BMC Physiol ; 11: 15, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21871098

RESUMO

BACKGROUND: Calcium sparks are ryanodine receptor mediated transient calcium signals that have been shown to hyperpolarize the membrane potential by activating large conductance calcium activated potassium (BK) channels in vascular smooth muscle cells. Along with voltage-dependent calcium channels, they form a signaling unit that has a vasodilatory influence on vascular diameter and regulation of myogenic tone. The existence and role of calcium sparks has hitherto been unexplored in the spiral modiolar artery, the end artery that controls blood flow to the cochlea. The goal of the present study was to determine the presence and properties of calcium sparks in the intact gerbil spiral modiolar artery. RESULTS: Calcium sparks were recorded from smooth muscle cells of intact arteries loaded with fluo-4 AM. Calcium sparks occurred with a frequency of 2.6 Hz, a rise time of 17 ms and a time to half-decay of 20 ms. Ryanodine reduced spark frequency within 3 min from 2.6 to 0.6 Hz. Caffeine (1 mM) increased spark frequency from 2.3 to 3.3 Hz and prolonged rise and half-decay times from 17 to 19 ms and from 20 to 23 ms, respectively. Elevation of potassium (3.6 to 37.5 mM), presumably via depolarization, increased spark frequency from 2.4 to 3.2 Hz. Neither ryanodine nor depolarization changed rise or decay times. CONCLUSIONS: This is the first characterization of calcium sparks in smooth muscle cells of the spiral modiolar artery. The results suggest that calcium sparks may regulate the diameter of the spiral modiolar artery and cochlear blood flow.


Assuntos
Artérias/fisiologia , Sinalização do Cálcio/fisiologia , Músculo Liso Vascular/fisiologia , Compostos de Anilina/administração & dosagem , Animais , Artérias/citologia , Artérias/efeitos dos fármacos , Cafeína/farmacologia , Cálcio/metabolismo , Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Cóclea/irrigação sanguínea , Feminino , Gerbillinae , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Potássio/farmacologia , Potássio/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Xantenos/administração & dosagem
16.
Eur J Oral Sci ; 119 Suppl 1: 185-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243245

RESUMO

Ameloblasts need to regulate pH during the formation of enamel crystals, a process that generates protons. Solute carrier family 26A member 4 (SLC26A4, or pendrin) is an anion exchanger for chloride, bicarbonate, iodine, and formate. It is expressed in apical membranes of ion-transporting epithelia in kidney, inner ear, and thyroid where it regulates luminal pH and fluid transport. We hypothesized that maturation ameloblasts express SLC26A4 to neutralize acidification of enamel fluid in forming enamel. In rodents, secretory and maturation ameloblasts were immunopositive for SLC26A4. Staining was particularly strong in apical membranes of maturation ameloblasts facing forming enamel. RT-PCR confirmed the presence of mRNA transcripts for Slc26a4 in enamel organs. SLC26A4 immunostaining was also found in mineralizing connective tissues, including odontoblasts, osteoblasts, osteocytes, osteoclasts, bone lining cells, cellular cementoblasts, and cementocytes. However, Slc26a4-null mutant mice had no overt dental phenotype. The presence of SLC26A4 in apical plasma membranes of maturation ameloblasts is consistent with a potential function as a pH regulator. SLC26A4 does not appear to be critical for ameloblast function and is probably compensated by other pH regulators.


Assuntos
Ameloblastos/metabolismo , Amelogênese/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/fisiologia , Órgão do Esmalte/metabolismo , Animais , Proteínas de Transporte de Ânions/biossíntese , Especificidade de Anticorpos , Calcificação Fisiológica/genética , Linhagem Celular , Tecido Conjuntivo/metabolismo , Cricetinae , Cristalização , Concentração de Íons de Hidrogênio , Transporte de Íons , Camundongos , Camundongos Knockout , Ratos , Transportadores de Sulfato
17.
Stroke ; 41(11): 2618-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20930159

RESUMO

BACKGROUND AND PURPOSE: We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. METHODS: We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks. RESULTS: TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 µmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin. CONCLUSIONS: TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis, and treatment.


Assuntos
Cóclea/irrigação sanguínea , Lisofosfolipídeos/fisiologia , Microvasos/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Fator de Necrose Tumoral alfa/farmacologia , Vasoconstrição/efeitos dos fármacos , Adulto , Animais , Cálcio/fisiologia , Etanercepte , Gerbillinae , Cobaias , Perda Auditiva/tratamento farmacológico , Perda Auditiva/etiologia , Perda Auditiva/fisiopatologia , Humanos , Imunoglobulina G/uso terapêutico , Microvasos/fisiologia , Modelos Animais , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Receptores do Fator de Necrose Tumoral/uso terapêutico , Fluxo Sanguíneo Regional/fisiologia , Esfingosina/fisiologia , Ligamento Espiral da Cóclea/irrigação sanguínea , Resultado do Tratamento , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Vasoconstrição/fisiologia
18.
BMC Physiol ; 10: 1, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20113508

RESUMO

BACKGROUND: The low luminal Ca2+ concentration of mammalian endolymph in the inner ear is required for normal hearing and balance. We recently reported the expression of mRNA for a Ca2+-absorptive transport system in primary cultures of semicircular canal duct (SCCD) epithelium. RESULTS: We now identify this system in native vestibular and cochlear tissues by qRT-PCR, immunoblots and confocal immunolocalization. Transcripts were found and quantified for several isoforms of epithelial calcium channels (TRPV5, TRPV6), calcium buffer proteins (calbindin-D9K, calbindin-D28K), sodium-calcium exchangers (NCX1, NCX2, NCX3) and plasma membrane Ca2+-ATPase (PMCA1, PMCA2, PMCA3, and PMCA4) in native SCCD, cochlear lateral wall (LW) and stria vascularis (SV) of adult rat as well as Ca2+ channels in neonatal SCCD. All components were expressed except TRPV6 in SV and PMCA2 in SCCD. 1,25-(OH)2vitamin D3 (VitD) significantly up-regulated transcripts of TRPV5 in SCCD, calbindin-D9K in SCCD and LW, NCX2 in LW, while PMCA4 in SCCD and PMCA3 in LW were down-regulated. The expression of TRPV5 relative to TRPV6 was in the sequence SV > Neonatal SCCD > Adult SCCD > LW > primary culture SCCD. Expression of TRPV5 protein from primary culture of SCCD did not increase significantly when cells were incubated with VitD (1.2 times control; P > 0.05). Immunolocalization showed the distribution of TRPV5 and TRPV6. TRPV5 was found near the apical membrane of strial marginal cells and both TRPV5 and TRPV6 in outer and inner sulcus cells of the cochlea and in the SCCD of the vestibular system. CONCLUSIONS: These findings demonstrate for the first time the expression of a complete Ca2+ absorptive system in native cochlear and vestibular tissues. Regulation by vitamin D remains equivocal since the results support the regulation of this system at the transcript level but evidence for control of the TRPV5 channel protein was lacking.


Assuntos
Cálcio/metabolismo , Cóclea/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo , Vestíbulo do Labirinto/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Calbindina 1 , Calbindinas , Epitélio/metabolismo , Imunofluorescência , Glicosilação , Transporte de Íons , Microscopia Confocal , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína G de Ligação ao Cálcio S100/genética , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPV/genética
19.
Hear Res ; 386: 107860, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869657

RESUMO

Purinergic receptors protect the cochlea during high-intensity stimulation by providing a parallel shunt pathway through non-sensory neighboring epithelial cells for cation absorption. So far, there is no direct functional evidence for the presence and type/subunit of purinergic receptors in the utricle of the vestibular labyrinth. The goal of the present study was to investigate which purinergic receptors are expressed and carry cation-absorption currents in the utricular transitional cells and macula. Purinergic agonists induced cation-absorption currents with a potency order of ATP > bzATP = αßmeATP â‰« ADP = UTP = UDP. ATP and bzATP are full agonists, whereas αßmeATP is a partial agonist. ATP-induced currents were partially inhibited by 100 µM suramin, 10 µM pyridoxal-phosphate-6-azo-(benzene-2,4-disulfonic acid (PPADS), or 5 µM 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1, 4-diazepin-2-one (5-BDBD), and almost completely blocked by 100 µM Gd3+ or by a combination of 10 µM PPADS and 5 µM 5-BDBD. Expression of the P2RX2 and P2RX4 receptor was detected by immunocytochemistry in transitional cells and macular supporting cells. This is the first study to demonstrate that ATP induces cation currents carried by a combination of P2RX2 and P2RX4 in utricular transitional and macular epithelial cells, and supporting the hypothesis that purinergic receptors protect utricular hair cells during elevated stimulus intensity levels.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Labirínticas de Suporte/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Sáculo e Utrículo/metabolismo , Animais , Agonismo Parcial de Drogas , Células Labirínticas de Suporte/efeitos dos fármacos , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X2/efeitos dos fármacos , Receptores Purinérgicos P2X4/efeitos dos fármacos , Sáculo e Utrículo/citologia , Sáculo e Utrículo/efeitos dos fármacos , Transdução de Sinais , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
20.
Am J Physiol Renal Physiol ; 297(5): F1435-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19692489

RESUMO

Mutations of SLC26A4 cause an enlarged vestibular aqueduct, nonsyndromic deafness, and deafness as part of Pendred syndrome. SLC26A4 encodes pendrin, an anion exchanger located in the cochlea, thyroid, and kidney. The goal of the present study was to determine whether developmental delays, possibly mediated by systemic or local hypothyroidism, contribute to the failure to develop hearing in mice lacking Slc26a4 (Slc26a4(-/-)). We evaluated thyroid function by voltage and pH measurements, by array-assisted gene expression analysis, and by determination of plasma thyroxine levels. Cochlear development was evaluated for signs of hypothyroidism by microscopy, in situ hybridization, and quantitative RT-PCR. No differences in plasma thyroxine levels were found in Slc26a4(-/-) and sex-matched Slc26a4(+/-) littermates between postnatal day 5 (P5) and P90. In adult Slc26a4(-/-) mice, the transepithelial potential and the pH of thyroid follicles were reduced. No differences in the expression of genes that participate in thyroid hormone synthesis or ion transport were observed at P15, when plasma thyroxine levels peaked. Scala media of the cochlea was 10-fold enlarged, bulging into and thereby displacing fibrocytes, which express Dio2 to generate a cochlear thyroid hormone peak at P7. Cochlear development, including tunnel opening, arrival of efferent innervation at outer hair cells, endochondral and intramembraneous ossification, and developmental changes in the expression of Dio2, Dio3, and Tectb were delayed by 1-4 days. These data suggest that pendrin functions as a HCO3- transporter in the thyroid, that Slc26a4(-/-) mice are systemically euthyroid, and that delays in cochlear development, possibly due to local hypothyroidism, lead to the failure to develop hearing.


Assuntos
Antiportadores de Cloreto-Bicarbonato/fisiologia , Cóclea/crescimento & desenvolvimento , Doenças Cocleares/etiologia , Audição/fisiologia , Hipotireoidismo/complicações , Animais , Antiportadores de Cloreto-Bicarbonato/genética , Cóclea/patologia , Doenças Cocleares/patologia , Eletrofisiologia , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Hipotireoidismo/patologia , Hibridização In Situ , Iodeto Peroxidase/biossíntese , Iodeto Peroxidase/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportadores de Sulfato , Tiroxina/sangue , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa