Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-33860252

RESUMO

Rotylenchus wimbii n. sp. was found associated with finger millet in Kenya and is described based on light microscopy, scanning electron microscopy, and molecular information. Sequence analysis was performed on ITS, 18S, and D2-D3 of 28S of ribosomal DNA and COI of mitochondrial DNA. This new species is characterized by a moderate female body size of 0.6 to 0.8 mm, a continuous hemispherical lip region with four annuli, 3 to 4 irregular blocks on the basal lip annule, absence of longitudinal cuticular striations in anterior region, four lateral lines forming three equal bands which are areolated mainly at pharynx level, a robust stylet of 23 to 27 µm of which 45 to 53% is cone part, and with rounded to sometimes indented knobs, a secretory-excretory pore around level of pharyngo-intestinal junction, didelphic-amphidelphic reproductive system, vulva without distinct epiptygma, indistinct to empty spermatheca, tail usually truncated with 5 to 9 annuli, phasmids located at 7 to 17 annuli anterior to anus, and absence of males. Molecular phylogenies, in combination with species delimitation, supported the distinctiveness of Rotylenchus wimbii n. sp. and revealed some mislabeled Rotylenchus brevicaudatus sequences in GenBank.

2.
J Exp Bot ; 67(15): 4559-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27312670

RESUMO

Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root.


Assuntos
Arabidopsis/parasitologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Microscopia Confocal , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa