Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 162(2): 271-286, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186187

RESUMO

Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129010

RESUMO

Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
Development ; 147(22)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33060131

RESUMO

In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Espermátides/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Masculino , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Espermátides/citologia , Espermatócitos/citologia
4.
Cell ; 135(2): 261-71, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957201

RESUMO

Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , DNA Helicases/metabolismo , Instabilidade Genômica , Recombinação Genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , DNA/metabolismo , DNA Helicases/genética , Reparo do DNA , Humanos , Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Development ; 142(24): 4374-84, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26552885

RESUMO

Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3' UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism.


Assuntos
Caenorhabditis elegans/metabolismo , Ácidos Indolacéticos/farmacologia , Proteólise/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Perda do Embrião/patologia , Fertilidade/efeitos dos fármacos , Deleção de Genes , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Larva/efeitos dos fármacos , Meiose/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo
6.
Mol Cell ; 39(1): 25-35, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598602

RESUMO

Fanconi anemia (FA) is a complex cancer susceptibility disorder associated with DNA repair defects and infertility, yet the precise function of the FA proteins in genome maintenance remains unclear. Here we report that C. elegans FANCD2 (fcd-2) is dispensable for normal meiotic recombination but is required in crossover defective mutants to prevent illegitimate repair of meiotic breaks by nonhomologous end joining (NHEJ). In mitotic cells, we show that DNA repair defects of C. elegans fcd-2 mutants and FA-deficient human cells are significantly suppressed by eliminating NHEJ. Moreover, NHEJ factors are inappropriately recruited to sites of replication stress in the absence of FANCD2. Our findings are consistent with the interpretation that FA results from the promiscuous action of NHEJ during DNA repair. We propose that a critical function of the FA pathway is to channel lesions into accurate, as opposed to error-prone, repair pathways.


Assuntos
Reparo do DNA/genética , Anemia de Fanconi/genética , Recombinação Genética , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Troca Genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteína Quinase Ativada por DNA/metabolismo , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Meiose/genética , Mutação/genética , Rad51 Recombinase/metabolismo , Estresse Fisiológico
7.
Mol Cell ; 37(2): 259-72, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20122407

RESUMO

Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/enzimologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Meiose , Rad51 Recombinase/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Helicases/fisiologia , Reparo do DNA/genética , DNA de Helmintos/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Recombinação Genética
8.
Nat Methods ; 10(10): 1028-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23995389

RESUMO

Study of the nematode Caenorhabditis elegans has provided important insights in a wide range of fields in biology. The ability to precisely modify genomes is critical to fully realize the utility of model organisms. Here we report a method to edit the C. elegans genome using the clustered, regularly interspersed, short palindromic repeats (CRISPR) RNA-guided Cas9 nuclease and homologous recombination. We demonstrate that Cas9 is able to induce DNA double-strand breaks with specificity for targeted sites and that these breaks can be repaired efficiently by homologous recombination. By supplying engineered homologous repair templates, we generated gfp knock-ins and targeted mutations. Together our results outline a flexible methodology to produce essentially any desired modification in the C. elegans genome quickly and at low cost. This technology is an important addition to the array of genetic techniques already available in this experimentally tractable model organism.


Assuntos
Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Helmíntico , Reparo de DNA por Recombinação , Ribonucleases/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Técnicas de Introdução de Genes , Mutação Puntual , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética
9.
PLoS Genet ; 9(12): e1003992, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348269

RESUMO

Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Sumoilação , Fatores de Transcrição/genética , Vulva/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Mapas de Interação de Proteínas , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/biossíntese , Vulva/citologia
10.
PLoS Genet ; 9(7): e1003582, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874209

RESUMO

The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1 endonucleases act redundantly to process late recombination intermediates to form crossovers during C. elegans meiosis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Meiose/genética , Recombinação Genética , Animais , Caenorhabditis elegans/genética , Segregação de Cromossomos/genética , Troca Genética , DNA Cruciforme/genética , Endodesoxirribonucleases/genética , Humanos , Mutação
11.
Nat Cell Biol ; 9(4): 391-401, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17384638

RESUMO

Here, we show that the human homologue of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2) associates with the S-phase checkpoint components ATR, ATRIP, claspin and Chk1. Consistent with a critical role in the S-phase checkpoint, HCLK2-depleted cells accumulate spontaneous DNA damage in S-phase, exhibit radio-resistant DNA synthesis, are impaired for damage-induced monoubiquitination of FANCD2 and fail to recruit FANCD2 and Rad51 (critical components of the Fanconi anaemia and homologous recombination pathways, respectively) to sites of replication stress. Although Thr 68 phosphorylation of the checkpoint effector kinase Chk2 remains intact in the absence of HCLK2, claspin phosphorylation and degradation of the checkpoint phosphatase Cdc25A are compromised following replication stress as a result of accelerated Chk1 degradation. ATR phosphorylation is known to both activate Chk1 and target it for proteolytic degradation, and depleting ATR or mutation of Chk1 at Ser 345 restored Chk1 protein levels in HCLK2-depleted cells. We conclude that HCLK2 promotes activation of the S-phase checkpoint and downstream repair responses by preventing unscheduled Chk1 degradation by the proteasome.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fase S/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Modelos Biológicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases , Interferência de RNA , RNA Interferente Pequeno/genética , Fase S/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
12.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766248

RESUMO

Apical extracellular matrices (aECMs) are associated with all epithelia and form a protective layer against biotic and abiotic threats in the environment. Despite their importance, we lack a deep understanding of their structure and dynamics in development and disease. C. elegans molting offers a powerful entry point to understanding developmentally programmed aECM remodeling. A transient matrix is formed in embryos and at the end of each larval stage, presumably to pattern the new cuticle. Focusing on targets of NHR-23, a key transcription factor which drives molting, we identified the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. We identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. MLT-11::mNeonGreen::3xFLAG transiently localized to the aECM in the cuticle and embryo. It was also detected in lining openings to the exterior (vulva, rectum, mouth). Reduction of mlt-11 function disrupted the barrier function of the cuticle. Tissue-specific RNAi suggested mlt-11 activity is primarily necessary in seam cells and we observed alae and seam cell fusion defects upon mlt-11 inactivation. Predicted mlt-11 null mutations caused fully penetrant embryonic lethality and elongation defects suggesting mlt-11 also plays an important role in patterning the embryonic sheath. Finally, we found that mlt-11 inactivation suppressed the blistered cuticle phenotype of mutants of bli-4 mutants, a subtilisin protease gene but did not affect BLI-4::sfGFP expression. These data could suggest that MLT-11 may be necessary to assure proper levels of BLI-4 activity.

13.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766223

RESUMO

The mammalian PAS-domain protein PERIOD (PER) and its C. elegans orthologue LIN-42 have been proposed to constitute an evolutionary link between two distinct, circadian and developmental, timing systems. However, while the function of PER in animal circadian rhythms is well understood molecularly and mechanistically, this is not true for the function of LIN-42 in timing rhythmic development. Here, using targeted deletions, we find that the LIN-42 PAS domains are dispensable for the protein's function in timing molts. Instead, we observe arrhythmic molts upon deletion of a distinct sequence element, conserved with PER. We show that this element mediates stable binding to KIN-20, the C. elegans CK1δ/ε orthologue. We demonstrate that CK1δ phosphorylates LIN-42 and define two conserved helical motifs, CK1δ-binding domain A (CK1BD-A) and CK1BD-B, that have distinct roles in controlling CK1δ-binding and kinase activity in vitro. KIN-20 and the LIN-42 CK1BD are required for proper molting timing in vivo. These interactions mirror the central role of a stable circadian PER-CK1 complex in setting a robust ~24-hour period. Hence, our results establish LIN-42/PER - KIN-20/CK1δ/ε as a functionally conserved signaling module of two distinct chronobiological systems.

14.
Sci Rep ; 14(1): 12936, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839826

RESUMO

Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ritmo Circadiano , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Mutação , Neurônios/metabolismo , Fatores de Transcrição
15.
Dev Cell ; 14(2): 263-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18267094

RESUMO

Repair of the programmed meiotic double-strand breaks (DSBs) that initiate recombination must be coordinated with homolog pairing to generate crossovers capable of directing chromosome segregation. Chromosome pairing and synapsis proceed independently of recombination in worms and flies, suggesting a paradoxical lack of coregulation. Here, we find that the meiotic axis component HTP-3 links DSB formation with homolog pairing and synapsis. HTP-3 forms complexes with the DSB repair components MRE-11/RAD-50 and the meiosis-specific axis component HIM-3. Loss of htp-3 or mre-11 recapitulates meiotic phenotypes consistent with a failure to generate DSBs, suggesting that HTP-3 associates with MRE-11/RAD-50 in a complex required for meiotic DSB formation. Loss of HTP-3 eliminates HIM-3 localization to axes and HIM-3-dependent homolog alignment, synapsis, and crossing over. Our study reveals a mechanism for coupling meiotic DSB formation with homolog pairing through the essential participation of an axis component with complexes mediating both processes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Troca Genética , Quebras de DNA de Cadeia Dupla , Meiose , Animais , Cromatina/metabolismo , Posicionamento Cromossômico , Reparo do DNA , Mutação/genética , Ligação Proteica , Transporte Proteico , Interferência de RNA
16.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37854098

RESUMO

C. elegans NHR-23 is a nuclear hormone receptor transcription factor involved in molting, apical extracellular matrix structure, and spermatogenesis. To determine NHR-23 expression dynamics, we previously tagged the endogenous nhr-23 locus with a GFP::AID*::3xFLAG tag. To allow co-localization of NHR-23 with green fluorescent protein-tagged factors of interest, we generated an equivalent strain carrying an mScarlet::3xMyc tag to produce a C-terminal fusion. Similar to the GFP::AID*::3xFLAG knock-in, NHR-23 ::mScarlet::3xMyc was expressed in seam and hypodermal cells, vulval precursor cells, and the spermatogenic germline. We also observed a diffuse NHR-23::mScarlet expression pattern in spermatids and residual bodies after NHR-23 ceased to localize on chromatin. Further examination of this novel localization may provide insight into NHR-23 regulation of spermatogenesis.

17.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37908494

RESUMO

The auxin-inducible degron (AID) system is a widely-used system for conditional protein depletion. During the course of an experiment, we depleted the nuclear hormone receptor transcription factor NHR-23 to study molting, and we recovered a spontaneous suppressor allele that bypassed the L1 larval arrest caused by NHR-23 depletion. These mutants also failed to deplete a BFP::AID reporter in the strain background, suggesting a broader defect in the AID system. These animals carried an in-frame 18 base pair insertion that produced a 6 amino acid repeat in TIR1. The larval arrest in these animals could be restored by expressing a wild-type TIR1 transgene from an extrachromosomal array. Sister siblings that lost this array developed normally on auxin. Together, these experiments indicate that the TIR1 mutation was causing the loss of developmental arrest in the nhr-23::AID strain. This result highlights the importance of setting up a robust secondary screen to detect such mutants if performing forward genetic screens in conjunction with the AID system.

18.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-38152058

RESUMO

We engineered a fluorescent fusion protein of C. elegans lamin, by fusing the eleventh beta strand of GFP to the N-terminus of LMN-1 at the endogenous lmn-1 locus. When co-expressed with GFP1-10, GFP11::LMN-1 was observed at the nuclear periphery of a wide variety of somatic cells. Homozygous gfp11::lmn-1 animals had normal numbers of viable embryos. However, the gfp11::lmn-1 animals had a mild swimming defect. While not completely functional, the GFP11::LMN-1 strain is more healthy than other published fluorescent LMN-1 lines, making it a valuable reagent for studying lamins.

19.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748711

RESUMO

Lysosomes are an important organelle required for the degradation of a range of cellular components. Lysosome function is critical for development and homeostasis as dysfunction can lead to inherited genetic disorders, cancer, and neurodegenerative and metabolic diseases. The acidic and protease-rich environment of lysosomes poses experimental challenges. Many fluorescent proteins are quenched or degraded, while specific red fluorescent proteins can be cleaved from translational fusion partners and accumulate. While studying MLT-11, a Caenorhabditis elegans molting factor that localizes to lysosomes and the cuticle, we sought to optimize several experimental parameters. We found that, in contrast to mNeonGreen fusions, mScarlet fusions to MLT-11 missed cuticular and rectal epithelial localization. Rapid sample lysis and denaturation were critical for preventing MLT-11 fragmentation while preparing lysates for western blots. Using a model lysosomal substrate (NUC-1), we found that rigid polyproline linkers and truncated mCherry constructs do not prevent cleavage of mCherry from NUC-1. We provide evidence that extended localization in lysosomal environments prevents the detection of FLAG epitopes in western blots. Finally, we optimize an acid-tolerant green fluorescent protein (Gamillus) for use in C. elegans. These experiments provide important experimental considerations and new reagents for the study of C. elegans lysosomal proteins.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo
20.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37927911

RESUMO

C. elegans NHR-85 is a poorly characterized nuclear hormone receptor transcription factor with an emerging role in regulating microRNA expression to control developmental timing. We generated the first NHR-85 translational fusion by knocking a GFP::AID*::3xFLAG cassette into the endogenous locus to tag all known isoforms. nhr-85 ::GFP::AID*::3xFLAG animals have wild-type broodsizes and NHR-85 ::GFP peaks in expression at the start of the L4 stage in epithelial cells. NHR-85 is not expressed in the germline, suggesting that while it might cooperate with the NHR-23 transcription factor to control microRNA expression, NHR-23 promotes spermatogenesis independent of NHR-85 . This nhr-85 ::GFP::AID*::3xFLAG strain will be a valuable resource for studying when and where NHR-85 acts to promote developmental timing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa