Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30760571

RESUMO

Herpes simplex virus 1 (HSV-1) cycles between phases of latency in sensory neurons and replication in mucosal sites. HSV-1 encodes two key proteins that antagonize the shutdown of host translation, US11 through preventing PKR activation and ICP34.5 through mediating dephosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). While profound attenuation of ICP34.5 deletion mutants has been repeatedly demonstrated, a role for US11 in HSV-1 pathogenesis remains unclear. We therefore generated an HSV-1 strain 17 US11-null virus and examined its properties in vitro and in vivo In U373 glioblastoma cells, US11 cooperated with ICP34.5 to prevent eIF2α phosphorylation late in infection. However, the effect was muted in human corneal epithelial cells (HCLEs), which did not accumulate phosphorylated eIF2α unless both US11 and ICP34.5 were absent. Low levels of phosphorylated eIF2α correlated with continued protein synthesis and with the ability of virus lacking US11 to overcome antiviral immunity in HCLE and U373 cells. Neurovirulence following intracerebral inoculation of mice was not affected by the deletion of US11. In contrast, the time to endpoint criteria following corneal infection was greater for the US11-null virus than for the wild-type virus. Replication in trigeminal ganglia and periocular tissue was promoted by US11, as was periocular disease. The establishment of latency and the frequency of virus reactivation from trigeminal ganglia were unaffected by US11 deletion, although emergence of the US11-null virus occurred with slowed kinetics. Considered together, the data indicate that US11 facilitates the countering of antiviral response of infected cells and promotes the efficient emergence of virus following reactivation.IMPORTANCE Alphaherpesviruses are ubiquitous DNA viruses and include the human pathogens herpes simplex virus 1 (HSV-1) and HSV-2 and are significant causes of ulcerative mucosal sores, infectious blindness, encephalitis, and devastating neonatal disease. Successful primary infection and persistent coexistence with host immune defenses are dependent on the ability of these viruses to counter the antiviral response. HSV-1 and HSV-2 and other primate viruses within the Simplexvirus genus encode US11, an immune antagonist that promotes virus production by preventing shutdown of protein translation. Here we investigated the impact of US11 deletion on HSV-1 growth in vitro and pathogenesis in vivo This work supports a role for US11 in pathogenesis and emergence from latency, elucidating immunomodulation by this medically important cohort of viruses.


Assuntos
Epitélio Corneano/metabolismo , Herpesvirus Humano 1 , Ceratite Herpética/metabolismo , Proteínas de Ligação a RNA/metabolismo , Gânglio Trigeminal/metabolismo , Proteínas Virais/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Epitélio Corneano/patologia , Epitélio Corneano/virologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Deleção de Genes , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Ceratite Herpética/genética , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Fosforilação , Proteínas de Ligação a RNA/genética , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Células Vero , Proteínas Virais/genética
2.
J Virol Methods ; 135(2): 197-206, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16647145

RESUMO

Bacterial artificial chromosomes (BACs) were constructed containing full-length, infectious DNA of HSV-1 strains 17 and KOS. To generate BACs without altering viral genes, sequences required for selection and propagation of the BAC were placed between the U(L)37 and U(L)38 genes, and flanked by LoxP sites. The system was tested by studying multiple properties of these HSV-1 BAC constructs in vitro and in vivo following propagation in bacteria, virus reconstitution from HSV-BAC DNA in eukaryotic cells, and Cre-recombinase-mediated excision of the BAC backbone. Based on in vitro growth in mouse embryo fibroblasts and in vivo growth in mouse corneas and trigeminal ganglia, the strain KOS BAC-derived virus behaved similarly to wild-type. Small changes in neurovirulence were, however, observed. The strain 17 BAC-derived virus exhibited modest decreases in growth and virulence compared to wild-type. Modest differences were observed in reactivation from latency with both strain KOS and 17 BAC-derived viruses. In addition, the system was further validated by performing mutagenesis of the BACs by allelic exchange in E. coli. These BACs are suitable for the rapid generation of recombinant viruses for pathogenesis and other studies, but as with all mutagenesis systems, care must be taken in their construction and repair.


Assuntos
Proteínas do Capsídeo/genética , Cromossomos Artificiais Bacterianos , Herpesvirus Humano 1/genética , Proteínas Estruturais Virais/genética , Animais , Chlorocebus aethiops , Escherichia coli/genética , Feminino , Genoma Viral , Herpesvirus Humano 1/fisiologia , Camundongos , Mutagênese , Células Vero , Ativação Viral , Replicação Viral
3.
J Virol ; 81(22): 12128-34, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17855538

RESUMO

The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.


Assuntos
Autofagia , Simplexvirus/fisiologia , Proteínas Virais/genética , Replicação Viral , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/virologia , Camundongos , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/genética , Fosforilação , Simplexvirus/genética , Replicação Viral/genética
4.
J Virol ; 77(8): 4626-34, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12663769

RESUMO

In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Herpesvirus Humano 1/patogenicidade , Ceratite Herpética/virologia , Supressão Genética , Proteínas Virais/genética , Replicação Viral , Animais , Células Cultivadas , Doenças da Córnea/virologia , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Camundongos , Fosforilação , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa