Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(2): 449-475, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34914192

RESUMO

Success of plants largely depends on their ability to defend against herbivores. Since emergence of the first voracious consumers, plants maintained adapting their structures and chemistry to escape from extinction. The constant pressure was further accelerated by adaptation of herbivores to plant defenses, which all together sparked the rise of a chemical empire comprised of thousands of specialized metabolites currently found in plants. Metabolic diversity in the plant kingdom is truly amazing, and although many plant metabolites have already been identified, a large number of potentially useful chemicals remain unexplored in plant bio-resources. Similarly, biosynthetic routes for plant metabolites involve many enzymes, some of which still wait for identification and biochemical characterization. Moreover, regulatory mechanisms that control gene expression and enzyme activities in specialized metabolism of plants are scarcely known. Finally, understanding of how plant defense chemicals exert their toxicity and/or repellency against herbivores remains limited to typical examples, such as proteinase inhibitors, cyanogenic compounds and nicotine. In this review, we attempt summarizing the current status quo in metabolic defense of plants that is predominantly based on the survey of ubiquitous examples of plant interactions with chewing herbivores.


Assuntos
Herbivoria , Mastigação , Adaptação Fisiológica , Plantas/metabolismo
2.
Pestic Biochem Physiol ; 169: 104646, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828365

RESUMO

New succinate dehydrogenase inhibitor fungicides (SDHIs), isopyrazam, pyraziflumid and isofetamid were introduced in the Japanese market in 2017-2018 to control powdery mildew on cucumber. SDHI resistance of the disease fungus (Podosphaera xanthii) was first reported during 2008-2009 against boscalid. Then, penthiopyrad which belongs to SDHIs was introduced in 2010, but subsequent monitoring study was not performed. We investigated the sensitivity of P. xanthii field isolates from Ibaraki Prefecture, Japan, to SDHIs and SdhB, SdhC and SdhD gene mutations, using a leaf disc assay and SDH gene analysis. A total of 19 out of the 22 selected isolates showed resistance to SDHIs. The 19 isolates were phenotypically categorized into three types: Resistant I as moderately and Resistant II as highly resistant to penthiopyrad, isopyrazam and pyraziflumid but sensitive to isofetamid and Resistant III as highly resistant to isofetamid but sensitive to the other three SDHIs. SDH gene analysis revealed that Resistant I and III isolates carried a substitution in PxD-S121P and PxC-A86V, respectively. Resistant II carried three different substitutions: PxC-G151R, PxC-G172D, and PxD-H137R. Among 127 isolates sampled from 16 cucumber greenhouses, 54 exhibited Resistant I phenotype and carried only PxD-S121P. Fifty-six isolates exhibited Resistant II and carried PxC-G151R (four isolates), PxC-G172D (24), and PxD-H137R (28). Only two isolates expressed the Resistant III phenotype carrying PxC-A86V. To the best of our knowledge, this is the first report demonstrating cross-resistance patterns and the molecular characterization of SDHIs in P. xanthii.


Assuntos
Cucumis sativus , Succinato Desidrogenase , Farmacorresistência Fúngica , Japão , Doenças das Plantas
3.
J Exp Bot ; 70(5): 1683-1696, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30715410

RESUMO

Feeding of sucking insects, such as the rice brown planthopper (Nilaparvata lugens; BPH), causes only limited mechanical damage on plants that is otherwise essential for injury-triggered defense responses against herbivores. In pursuit of complementary BPH elicitors perceived by plants, we examined the potential effects of BPH honeydew secretions on the BPH monocot host, rice (Oryza sativa). We found that BPH honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively. We then examined the elicitor active components in the honeydew and found that bacteria in the secretions are responsible for the activation of plant defense. Corroborating the importance of honeydew-associated microbiota for induced plant resistance, BPHs partially devoid of their microbiota via prolonged antibiotics ingestion induced significantly less defense in rice relative to antibiotic-free insects applied to similar groups of plants. Our data suggest that rice plants may additionally perceive herbivores via their honeydew-associated microbes, allowing them to discriminate between incompatible herbivores-that do not produce honeydew-and those that are compatible and therefore dangerous.


Assuntos
Cucumis melo/microbiologia , Regulação da Expressão Gênica de Plantas/imunologia , Hemípteros/fisiologia , Herbivoria , Oryza/imunologia , Doenças das Plantas/imunologia , Animais
4.
Exp Appl Acarol ; 63(3): 313-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24659516

RESUMO

A population survey of phytoseiid mites and spider mites was conducted on peach leaves and wild plants in Japanese peach orchards having different pesticide practices. The phytoseiid mite species composition on peach leaves and wild plants, as estimated using quantitative sequencing, changed during the survey period. Moreover, it varied among study sites. The phytoseiid mite species compositions were similar between peach leaves and some wild plants, such as Veronica persica, Paederia foetida, Persicaria longiseta, and Oxalis corniculata with larger quantities of phytoseiid mites, especially after mid-summer. A PCR-based method to detect the ribosomal ITS sequences of Tetranychus kanzawai and Panonychus mori from phytoseiid mites was developed. Results showed that Euseius sojaensis (specialized pollen feeder/generalist predator) uses both spider mites as prey in the field.


Assuntos
Ácaros/fisiologia , Controle de Pragas/métodos , Prunus , Tetranychidae/fisiologia , Acaricidas , Animais , Sequência de Bases , Clonagem Molecular , Resistência a Medicamentos , Ácaros/classificação , Ácaros/genética , Dados de Sequência Molecular , Dinâmica Populacional , Alinhamento de Sequência , Tetranychidae/classificação , Tetranychidae/genética
5.
Plant Signal Behav ; 18(1): 2243064, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37585707

RESUMO

Acute stress responses include release of defensive volatiles from herbivore-attacked plants. Here we used two closely related monocot species, rice as a representative C3 plant, and sorghum as a representative C4 plant, and compared their basal and stress-induced headspace volatile organic compounds (VOCs). Although both plants emitted similar types of constitutive and induced VOCs, in agreement with the close phylogenetic relationship of the species, several mono- and sesquiterpenes have been significantly less abundant in headspace of sorghum relative to rice. Furthermore, in spite of generally lower VOC levels, some compounds, such as the green leaf volatile (Z)-3-hexenyl acetate and homoterpene DMNT, remained relatively high in the sorghum headspace, suggesting that a separate mechanism for dispersal of these compounds may have evolved in this plant. Finally, a variable amount of several VOCs among three sorghum cultivars of different geographical origins suggested that release of VOCs could be used as a valuable resource for the increase of sorghum resistance against herbivores.


This paper shows how genetically related plants with similar volatile toolboxes define their own species identity in the ecological space.


Assuntos
Oryza , Sesquiterpenos , Sorghum , Compostos Orgânicos Voláteis , Herbivoria , Filogenia , Plantas , Compostos Orgânicos Voláteis/farmacologia
6.
MethodsX ; 8: 101220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434743

RESUMO

Nesidiocoris tenuis is a zoophytophagous mirid bug widely studied for its role in preying on major greenhouse pests. Since N. tenuis has now been known for its vigorous predation potential on pests such as Bemisia tabaci, many applied entomologists are now recommending that N. tenuis be merged into the Integrated Pest management (IPM) systems. However, successful integration of N. tenuis into any IPM system depends on thorough evaluation with compatible pesticides, as incompatible pesticides can offset the whole idea of IPM. Here, we simulate the field situation where N. tenuis feeds directly on a contaminated B. tabaci nymph or leaves. However, instead of using live B. tabaci nymphs, we used brine shrimp eggs, Artemia salina (Linnaeus, 1758). Brine shrimp eggs have been reported to be an excellent factitious supplementary diet in augmenting N. tenuis populations. Thus, we use brine shrimp eggs to determine the toxicity of pesticides, to which the calculated mortality rates can be used to determine which pesticides can be used together with N. tenuis in an IPM system against any related pest.•We developed a customized containment system that promotes aeration and minimize contamination.•Pesticide contaminated hatched brine shrimp eggs is delivered to N. tenuis in the aerated containment system.•In addition to established methods such as leaf dipping or insect dipping, this method shows to mimic N. tenuis feeding on contaminated B. tabaci nymphs in field conditions thus, predicts how a pesticide may be of toxic or compatible with N. tenuis when both are integrated together.

7.
Insects ; 12(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921636

RESUMO

This is an excerpt giving an overview of the Special Issue: Biology and Management of Sap-Sucking Pests [...].

8.
Insects ; 12(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801083

RESUMO

Natural predators such as Nesidiocoris tenuis are known for their role in managing greenhouse pests. However, techniques in maximizing the biological control potential of N. tenuis under field conditions are still lacking. We evaluated under greenhouse conditions the prospects of Artemia cysts enhanced with high fructose corn syrup and honey, and delivered using hemp strings (hemp rope) as supplementary factitious dietary in augmenting the proliferation and spread of N. tenuis on tomato plants. Results showed that N. tenuis supplemented with hemp rope could establish, proliferate and disperse among tomato plants compared to the N. tenuis supplemented with banker plants. Even though N. tenuis proliferated exponentially on banker plants, their movement and relocation to tomato plants, as expected, were only congested on tomato plants near the banker plants. However, as the survey continued, they relocated to the rest of the tomato plants. Furthermore, the number of Bemisia tabaci eggs and nymphs, a serious greenhouse pest of tomato, was observed to be significantly reduced in hemp rope greenhouse compared to banker plants and the negative control (no pest control system) greenhouses. This study, therefore, establishes foundational data on the usage of Artemia cysts enhanced with isomerized sugar (high fructose corn syrup) and honey under greenhouse conditions as factitious supplementary dietary in supporting N. tenuis establishment and spread, traits that are essential towards development of whitefly Integrated Pest Management (IPM) system. enhanced with isomerized sugar (high fructose corn syrup) and honey.

9.
Pest Manag Sci ; 76(9): 3236-3252, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32356395

RESUMO

BACKGROUND: Bemisia tabaci is a notorious agricultural pest that causes serious damage to many crops via herbivory and spread of viral diseases. Effective control measures are, therefore, required. Integrating entomopathogenic fungi into the chemical control system offers promise for B. tabaci management. RESULTS: In-vitro assays on the augmentative effect of Beauveria bassiana GHA strain with insecticides, and its compatibility with fungicides were tested. Varying egg mortality was observed for most insecticides except for milbemectin. Pyrifluquinazon was less effective against the nymphs. Flonicamid showed no insecticidal effect on either nymphs or adults. However, increased mortality in nymphs and adults was observed when flonicamid was mixed with Beauveria bassiana GHA strain. Furthermore, no significant synergistic effect of mixing pesticides with B. bassiana GHA strain was observed. Most insecticides (when not mixed with B. bassiana) showed high (>80%) mortality against B. tabaci nymphs and adults. Most fungicides tested showed no inhibitory effects on B. bassiana GHA strain against B. tabaci nymphs and adults. Fungistatic effect was observed in the mycelial and spore germination inhibition studies. Weekly rotation of some pesticides with B. bassiana GHA strain in greenhouse conditions yielded significant reduction in different growth stages of B. tabaci. However, no significant difference in viral incidence was observed. CONCLUSION: Laboratory and field tests showed positive effects of augmenting pesticides and B. bassiana GHA strain against B. tabaci nymphs and adults. Therefore, augmentation of pesticides and B. bassiana GHA strain is one prospect towards developing an effective B. tabaci IPM system. © 2020 Society of Chemical Industry.


Assuntos
Beauveria , Hemípteros , Praguicidas , Animais , Ninfa , Controle Biológico de Vetores
10.
Plant Signal Behav ; 14(11): 1655335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31422731

RESUMO

Plants use many natural products to counter pests and diseases in nature. In rice, direct defense mechanisms include broad range of secondary metabolites, such as phenolamides (PA), diterpene phytoalexins, and flavonoid sakuranetin. Recently, accumulation of PAs in rice was shown to be under control of microbial symbionts in honeydew (HD), digestive waste from the rice brown planthopper (Nilaparvata lugens; BPH), but whether HD microbiota can also promote diterpene phytoalexins, momilactone A (MoA) and MoB, has not been reported. Here, we demonstrate that crude HD, but not a filtered one, induces MoA and MoB in rice, suggesting the involvement of BPH-HD endosymbionts. Consequently, microbial strains previously isolated from HD could promote MoA and MoB levels in wounded rice leaves, suggesting that rice indeed responds to BPH by cumulative chemical defense that involves both PA and diterpene phytoalexin pathways.


Assuntos
Cucumis melo/microbiologia , Cucumis melo/parasitologia , Diterpenos/metabolismo , Hemípteros/fisiologia , Lactonas/metabolismo , Oryza/microbiologia , Oryza/parasitologia , Simbiose , Animais , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa