Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Sports Sci ; 42(8): 708-719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38861612

RESUMO

This study aimed to investigate inter- and intra-athlete technique variability in pre-elite and elite Australian fast bowlers delivering new ball conventional swing bowling. Ball grip angle and pelvis, torso, shoulder, elbow, wrist, upper arm, forearm, and hand kinematics were investigated at the point of ball release for inswing and outswing deliveries. Descriptive evaluations of group and individual data and k-means cluster analyses were used to assess inter- and intra-bowler technique variability. Inter-athlete technique and ball grip variability were identified, demonstrating that skilled bowlers use individualised strategies to generate swing. Functional movement variability was demonstrated by intra-athlete variability in successful swing bowling trials. Bowlers demonstrated stable technique parameters in large proximal body segments of the pelvis and torso, providing a level of repeatability to their bowling action. Greater variation was observed in bowling arm kinematics, allowing athletes to manipulate the finger and ball position to achieve the desired seam orientation at the point of ball release. This study demonstrates that skilled bowlers use individualised techniques and grips to generate swing and employ technique variations in successive deliveries. Coaches should employ individualised training strategies and use constraints-led approaches in training environments to encourage bowlers to seek adaptive movement solutions to generate swing.


Assuntos
Críquete , Destreza Motora , Tronco , Humanos , Masculino , Fenômenos Biomecânicos , Destreza Motora/fisiologia , Adulto Jovem , Tronco/fisiologia , Críquete/fisiologia , Austrália , Movimento/fisiologia , Pelve/fisiologia , Estudos de Tempo e Movimento , Mãos/fisiologia , Punho/fisiologia , Adulto , Ombro/fisiologia , Extremidade Superior/fisiologia
2.
Entropy (Basel) ; 26(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920510

RESUMO

The process of end-joining during nonhomologous repair of DNA double-strand breaks (DSBs) after radiation damage is considered. Experimental evidence has revealed that the dynamics of DSB ends exhibit subdiffusive motion rather than simple diffusion with rare directional movement. Traditional models often overlook the rare long-range directed motion. To address this limitation, we present a heterogeneous anomalous diffusion model consisting of subdiffusive fractional Brownian motion interchanged with short periods of long-range movement. Our model sheds light on the underlying mechanisms of heterogeneous diffusion in DSB repair and could be used to quantify the DSB dynamics on a time scale inaccessible to single particle tracking analysis. The model predicts that the long-range movement of DSB ends is responsible for the misrepair of DSBs in the form of dicentric chromosome lesions.

3.
Scand J Med Sci Sports ; 33(4): 420-432, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36408795

RESUMO

Anterior cruciate ligament (ACL) injuries have a significant impact on athletic performance and long-term quality of life. Force plates and qualitative screening tools are feasible and effective screening methods to identify abnormal movement quality associated with increased injury risk. Comparing qualitative assessments of landing ability with force-time curves, may detect unique differences between safe and high-risk athletic movement patterns. The aim of this study was to determine low- and high-risk landing ability from qualitive landing assessments and to examine the resulting force-time curves using functional principal component analysis (fPCA). Thirty-one healthy academy athletes (10 males and 21 females) completed double- and single-leg dominant and non-dominant jump-landing-rebound tasks. All movements were filmed in multiple-planes, and vertical ground reaction forces (vGRF) were simultaneously collected. The Landing Error Scoring System (LESS) and Single-Leg Landing Error Scoring System (SL-LESS) were used to score landing footage. From these scores, athletes were categorized into low-risk and high-risk groups for further analysis. fPCA was used to examine differences between landing quality groups force-time curves. Compared to high-risk landers, low-risk landers demonstrated significantly longer contact times across all movements. Scores from fPC1 revealed safe and high-risk landing techniques expose athletes to significantly different loading patterns during double- and single-leg dominant movements. A significant positive relationship was observed between fPC1 and LESS scores, however this relationship was not observed in both single-leg landing scores. Where possible incorporating curve analysis methods like fPCA into multi-faceted screening approaches may help practitioners uncover unique insights into athletic loading strategies.


Assuntos
Lesões do Ligamento Cruzado Anterior , Desempenho Atlético , Masculino , Feminino , Humanos , Fenômenos Biomecânicos , Qualidade de Vida , Movimento , Articulação do Joelho
4.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137176

RESUMO

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Assuntos
Citocinese , Linfócitos , Dano ao DNA , Testes para Micronúcleos/métodos , Radiação Ionizante
5.
J Strength Cond Res ; 36(10): 2752-2761, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687846

RESUMO

ABSTRACT: Hughes, S, Warmenhoven, J, Haff, GG, Chapman, DW, and Nimphius, S. Countermovement jump and squat jump force-time curve analysis in control and fatigue conditions. J Strength Cond Res 36(10): 2752-2761, 2022-This study aimed to reanalyze previously published discrete force data from countermovement jumps (CMJs) and squat jumps (SJs) using statistical parametric mapping (SPM), a statistical method that enables analysis of data in its native, complete state. Statistical parametric mapping analysis of 1-dimensional (1D) force-time curves was compared with previous zero-dimensional (0D) analysis of peak force to assess sensitivity of 1D analysis. Thirty-two subjects completed CMJs and SJs at baseline, 15 minutes, 1, 24, and 48 hours following fatigue and control conditions in a pseudo random cross-over design. Absolute (CMJ ABS /SJ ABS ) and time-normalized (CMJ NORM /SJ NORM ) force-time data were analyzed using SPM 2-way repeated measures analysis of variance with significance accepted at α = 0.05. The SPM indicated a magnitude of difference between force-time data with main effects for time ( p < 0.001) and interaction ( p < 0.001) observed in CMJ ABS , SJ ABS, and SJ NORM, whereas previously published 0D analysis reported no 2-way interaction in CMJ and SJ peak force. This exploratory research demonstrates the strength of SPM to identify changes between entire movement force-time curves. Continued development and use of SPM analysis techniques could present the opportunity for refined assessment of athlete fatigue and readiness with the analysis of complete force-time curves.


Assuntos
Músculo Esquelético , Postura , Atletas , Fadiga , Humanos , Movimento , Força Muscular
6.
J Strength Cond Res ; 36(11): 3136-3142, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795602

RESUMO

ABSTRACT: Thomas, C, Dos'Santos, T, Warmenhoven, J, and Jones, PA. Between-limb differences during 180° turns in female soccer players: application of statistical parametric mapping. J Strength Cond Res 36(11): 3136-3142, 2022-This study was exploratory in nature and investigated the ability of statistical parametric mapping (SPM) to assess between-limb differences in lower-extremity movement change of direction. Fourteen female soccer players (mean ± SD ; age = 20.6 ± 0.6 years; height = 1.65 ± 0.07 m; and body mass = 56.04 ± 6.20 kg). For comparisons between preferred and nonpreferred limbs, vertical (Fz) and horizontal (Fx) ground reaction force were determined along with hip, knee, and ankle angles and moments in the sagittal plane during weight acceptance during the final contact. In addition, frontal plane knee abduction angles and moments were calculated during the final contact. Statistical parametric mapping software was then used to assess for differences between the entire weight acceptance phase of preferred and nonpreferred limbs. There were no differences between limbs in all variables using SPM. These results demonstrate that female soccer players exhibit little side-to-side differences in certain lower-limb biomechanics when performing a turn maneuver. These findings can be utilized by practitioners and clinicians when developing injury prevention and rehabilitation programs.


Assuntos
Futebol , Feminino , Humanos , Adulto Jovem , Adulto , Futebol/lesões , Articulação do Joelho , Fenômenos Biomecânicos , Extremidade Inferior , Movimento
7.
PLoS Comput Biol ; 16(12): e1008476, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326415

RESUMO

Developments in the genome organisation field has resulted in the recent methodology to infer spatial conformations of the genome directly from experimentally measured genome contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromosomal arrangements. Chromosomal intermingling is an important driver for radiation-induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of cancer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time, we leverage these methods of inferring genome organisation and couple them to nano-dosimetric radiation track structure modelling to predict quantities and distribution of DNA damage within cell-type specific geometries. These nano-dosimetric simulations are highly dependent on geometry and are benefited from the inclusion of experimentally driven chromosome conformations. We show how the changes in Hi-C contract maps impact the inferred geometries resulting in significant differences in chromosomal intermingling. We demonstrate how these differences propagate through to significant changes in the distribution of DNA damage throughout the cell nucleus, suggesting implications for DNA repair fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for the chromosomes between the cell-types are a plausible factor leading to changes in cellular radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and show that this greatly impacts the distribution of DNA damage. This should be considered when comparing in vitro results to in vivo systems. The effect may be especially important when attempting to translate radiosensitivity measurements at the experimental in vitro level to the patient or human level.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA/efeitos da radiação , Genoma , Neoplasias/tratamento farmacológico , Cromossomos/efeitos da radiação , Análise por Conglomerados , Simulação por Computador , Humanos , Tolerância a Radiação
8.
Pediatr Exerc Sci ; 31(4): 448-457, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30982436

RESUMO

PURPOSE: A novel 4-task Athlete Introductory Movement Screen was developed and tested to provide an appropriate and reliable movement screening tool for youth sport practitioners. METHODS: The overhead squat, lunge, push-up, and a prone brace with shoulder touches were selected based on previous assessments. A total of 28 mixed-sport junior athletes (18 boys and 10 girls; mean age = 15.7 [1.8] y) completed screening after viewing standardized demonstration videos. Athletes were filmed performing 8 repetitions of each task and assessed retrospectively by 2 independent raters using a 3-point scale. The primary rater reassessed the footage 3 weeks later. A subgroup (n = 11) repeated the screening 7 days later, and a further 8 athletes were reassessed 6 months later. Intraclass correlation coefficients (ICC), typical error (TE), coefficient of variation (CV%), and weighted kappa (k) were used in reliability analysis. RESULTS: For the Athlete Introductory Movement Screen 4-task sum score, intrarater reliability was high (ICC = .97; CV = 2.8%), whereas interrater reliability was good (intraclass correlation coefficient = .88; CV = 5.6%). There was a range of agreement from fair to almost perfect (k = .31-.89) between raters across individual movements. A 7-day and 6-month test-retest held good reliability and acceptable CVs (≤ 10%) for sum scores. CONCLUSION: The 4-task Athlete Introductory Movement Screen appears to be a reliable tool for profiling emerging athletes. Reliability was strongest within the same rater; it was lower, yet acceptable, between 2 raters. Scores can provide an overview of appropriate movement competencies, helping practitioners assess training interventions in the athlete development pathway.


Assuntos
Atletas , Teste de Esforço/métodos , Movimento , Esportes Juvenis , Adolescente , Feminino , Humanos , Masculino , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Gravação em Vídeo
10.
BMC Musculoskelet Disord ; 16: 348, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26563153

RESUMO

BACKGROUND: Many injury prevention and rehabilitation programs aim to train hamstring and quadriceps co-activation to constrain excessive anterior tibial translation and protect the anterior cruciate ligament (ACL) from injury. However, despite strong clinical belief in its efficacy, primary evidence supporting training co-activation of the hamstrings and quadriceps muscles for ACL injury prevention and rehabilitation is quite limited. Therefore, the purpose of the study presented in this paper was to determine if hamstring-quadriceps co-activation alters knee joint kinematics, and also establish if it affects ACL elongation. METHODS: A computed tomography (CT) scan from each participant's dominant leg was acquired prior to performing two step-ups under fluoroscopy: one with 'natural' hamstring-quadriceps co-activation, one with deliberate co-activation. Electromyography was used to confirm increased motor unit recruitment. The CT scan was registered to fluoroscopy for 4-D modeling, and knee joint kinematics subsequently measured. Anterior cruciate ligament attachments were mapped to the 4-D models and its length was assumed from the distance between attachments. Anterior cruciate ligament elongation was derived from the change in distance between those points as they moved relative to each other. RESULTS: Reduced ACL elongation as well as knee joint rotation, abduction, translation, and distraction was observed for the step up with increased co-activation. A relationship was shown to exist for change in ACL length with knee abduction (r = 0.91; p ≤ 0.001), with distraction (r = -0.70; p = 0.02 for relationship with compression), and with anterior tibial translation (r = 0.52; p = 0.01). However, ACL elongation was not associated with internal rotation or medial translation. Medial hamstring-quadriceps co-activation was associated with a shorter ACL (r = -0.71; p = 0.01), and lateral hamstring-quadriceps co-activation was related to ACL elongation (r = 0.46; p = 0.05). CONCLUSION: Net co-activation of the hamstrings and quadriceps muscles will likely reduce ACL elongation provided that the proportion of medial hamstring-quadriceps co-activation exceeds lateral.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Joelho/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Lesões do Ligamento Cruzado Anterior , Fenômenos Biomecânicos , Eletromiografia , Humanos , Traumatismos do Joelho/fisiopatologia , Traumatismos do Joelho/prevenção & controle , Masculino , Projetos Piloto , Rotação , Adulto Jovem
11.
Sports Biomech ; 22(2): 268-281, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35610944

RESUMO

Springboard diving training is often focused upon skill repetition to establish movement accuracy, stability and consistency. Within-participant study designs provide the ability to understand how individuals create these skills under different movement strategies. IMUs measured angular velocity time-series data of two athletes performing multiple repetitions of forward 3½ somersault pike dives. Functional Principal Component Analyses (fPCA) were performed to examine individual movement structure and variability. The first five fPC's represented approximately 98% of the variability in angular velocity for both divers. To determine the relative importance of angular velocity variability, Pearson's correlations for pairwise comparisons were used to assess the relationship between fPC scores and discrete performance variables during takeoff, flight and entry. Divers exhibited a different number and types of significant correlations (International = 4; National = 11). Only one correlation was common for both divers; higher angular velocity during Initial Flight and/or Somersault phases resulted in more vertically aligned entry posture (International: fPC1 r = -0.761, p < 0.05; National: fPC3 r = -0.796, p < 0.01). Findings identify individualised angular velocity time-series structure and kinematic performance variables (International = angular; National = linear) that can be used by coaching/sport science teams to optimisation performance success.


Assuntos
Mergulho , Humanos , Fenômenos Biomecânicos , Postura , Movimento , Fatores de Tempo
12.
PeerJ ; 11: e14921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949756

RESUMO

A common approach in the biomechanical analysis of running technique is to average data from several gait cycles to compute a 'representative mean.' However, the impact of the quantity and selection of gait cycles on biomechanical measures is not well understood. We examined the effects of gait cycle selection on kinematic data by: (i) comparing representative means calculated from varying numbers of gait cycles to 'global' means from the entire capture period; and (ii) comparing representative means from varying numbers of gait cycles sampled from different parts of the capture period. We used a public dataset (n = 28) of lower limb kinematics captured during a 30-second period of treadmill running at three speeds (2.5 m s-1, 3.5 m s-1 and 4.5 m s-1). 'Ground truth' values were determined by averaging data across all collected strides and compared to representative means calculated from random samples (1,000 samples) of n (range = 5-30) consecutive gait cycles. We also compared representative means calculated from n (range = 5-15) consecutive gait cycles randomly sampled (1,000 samples) from within the same data capture period. The mean, variance and range of the absolute error of the representative mean compared to the 'ground truth' mean progressively reduced across all speeds as the number of gait cycles used increased. Similar magnitudes of 'error' were observed between the 2.5 m s-1 and 3.5 m s-1 speeds at comparable gait cycle numbers -where the maximum errors were < 1.5 degrees even with a small number of gait cycles (i.e., 5-10). At the 4.5 m s-1 speed, maximum errors typically exceeded 2-4 degrees when a lower number of gait cycles were used. Subsequently, a higher number of gait cycles (i.e., 25-30) was required to achieve low errors (i.e., 1-2 degrees) at the 4.5 m s-1 speed. The mean, variance and range of absolute error of representative means calculated from different parts of the capture period was consistent irrespective of the number of gait cycles used. The error between representative means was low (i.e., < 1.5 degrees) and consistent across the different number of gait cycles at the 2.5 m s-1 and 3.5 m s-1 speeds, and consistent but larger (i.e., up to 2-4 degrees) at the 4.5 m s-1 speed. Our findings suggest that selecting as many gait cycles as possible from a treadmill running bout will minimise potential 'error.' Analysing a small sample (i.e., 5-10 cycles) will typically result in minimal 'error' (i.e., < 2 degrees), particularly at lower speeds (i.e., 2.5 m s-1 and 3.5 m s-1). Researchers and clinicians should consider the balance between practicalities of collecting and analysing a smaller number of gait cycles against the potential 'error' when determining their methodological approach. Irrespective of the number of gait cycles used, we recommend that the potential 'error' introduced by the choice of gait cycle number be considered when interpreting the magnitude of effects in treadmill-based running studies.


Assuntos
Marcha , Corrida , Extremidade Inferior , Teste de Esforço/métodos , Fenômenos Biomecânicos
13.
Radiat Res ; 200(6): 509-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014593

RESUMO

The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Dano ao DNA , Quebras de DNA de Cadeia Dupla , Simulação por Computador
14.
J Radiat Res ; 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37154587

RESUMO

The pBR322 plasmid DNA was irradiated with 35 MeV electrons, 228 MeV protons and 300 kVp X-rays to quantify DNA damage and make comparisons of DNA damage between radiation modalities. Plasmid was irradiated in a medium containing hydroxyl radical scavengers in varying concentrations. This altered the amount of indirect hydroxyl-mediated DNA damage, to create an environment that is more closely associated with a biological cell. We show that increasing hydroxyl scavenger concentration significantly reduced post-irradiation DNA damage to pBR322 plasmid DNA consistently and equally with three radiation modalities. At low scavenging capacities, irradiation with both 35 MeV electrons and 228 MeV protons resulted in increased DNA damage per dose compared with 300 kVp X-rays. We quantify both single-strand break (SSB) and double-strand break (DSB) induction between the modalities as a ratio of yields relative to X-rays, referred to as relative biological effectiveness (RBE). RBESSB values of 1.16 ± 0.15 and 1.18 ± 0.08 were calculated for protons and electrons, respectively, in a low hydroxyl scavenging environment containing 1 mM Tris-HCl for SSB induction. In higher hydroxyl scavenging capacity environments (above 1.1 × 106 s-1), no significant differences in DNA damage induction were found between radiation modalities when using SSB induction as a measure of RBE. Considering DSB induction, significant differences were only found between X-rays and 35 MeV electrons, with an RBEDSB of 1.72 ± 0.91 for 35 MeV electrons, indicating that electrons result in significantly more SSBs and DSBs per unit of dose than 300 kVp X-rays.

15.
Sports Biomech ; : 1-19, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453176

RESUMO

Research in sports biomechanics often relies on the use of ordinary least squares (OLS) regression. However, since sports biomechanics research is often characterised by high-dimensional data sets with many predictor variables and few observations, use of OLS regression can sometimes be problematic from a statistical perspective. Statistical learning methods may provide alternate ways to deal with high-dimensional data sets and partially address these problems. For example, regularisation adds penalties to the cost function of OLS regression models, which shrinks large regression coefficients and decreases the model's sensitivity to noise in the data. Regularised regression models also protect against overfitting, improve generalisability, and can be used for variable selection. A short review of biomechanics research studies illustrates how these models provided ways to reduce the number of variables within a model and select only the primary predictors of performance, which helped with the interpretation of results and identified distinct combinations of key predictors of performance. In addition, we illustrate how these models are applied to two sports biomechanics datasets. Given the advantages, sports biomechanists may want to consider the use of regularised regression models in their research design and statistical analyses. Careful consideration should be given, however, to the construction, validation, and interpretation of these models considering their underpinning assumptions and limitations.

16.
Int J Sports Physiol Perform ; 17(5): 711-719, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193111

RESUMO

PURPOSE: In volleyball, jump execution is critical for the match outcome. Game-play-related neuromuscular impairments may manifest as decreased jump height (JH) or increased jump total duration, both of which are pivotal for performance. To investigate changes in JH and kinetics with game play, the authors conducted a prospective exploratory analysis using minimal-effect testing (MET) and equivalence testing with the 2 one-sided tests procedure, univariate, and bivariate functional principal component analysis, respectively. METHODS: Twelve male varsity athletes completed 3-set matches on 2 consecutive days. Countermovement jumps were performed on a force platform immediately prematch and postmatch on days 1 and 2 and once on days 3 and 4. RESULTS: Across sessions, JH was equivalent (P < .022, equivalence test), while total duration reported inconclusive changes (P > .227). After match 2, MET indicated that relative force at zero velocity (P = .036) decreased, while braking duration (P = .040) and time to peak force (P = .048) increased compared with baseline. With the first and second functional principal components, these alterations, together with decreased relative braking rate of force development (P = .092), were already evident after match 1. On day 4, MET indicated that relative peak force (P = .049), relative force at zero velocity (P = .023), and relative braking rate of force development (P = .021) decreased, whereas braking duration (P = .025) increased from baseline. CONCLUSIONS: Impairments in jump kinetics were evident from variables related to the countermovement-jump braking phase, while JH was equivalent. In addition to these experimental findings, the present research provides information for the choice of sample size and smallest effect size of interest when using MET and 1- and 2-dimensional analyses for countermovement-jump height and kinetics.


Assuntos
Desempenho Atlético , Voleibol , Humanos , Cinética , Masculino , Força Muscular , Estudos Prospectivos
17.
Commun Biol ; 5(1): 700, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835982

RESUMO

Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting.


Assuntos
Reparo do DNA
18.
Radiat Res ; 198(3): 207-220, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35767729

RESUMO

Track structure Monte Carlo simulations are a useful tool to investigate the damage induced to DNA by ionizing radiation. These simulations usually rely on simplified geometrical representations of the DNA subcomponents. DNA damage is determined by the physical and physicochemical processes occurring within these volumes. In particular, damage to the DNA backbone is generally assumed to result in strand breaks. DNA damage can be categorized as direct (ionization of an atom part of the DNA molecule) or indirect (damage from reactive chemical species following water radiolysis). We also consider quasi-direct effects, i.e., damage originated by charge transfers after ionization of the hydration shell surrounding the DNA. DNA geometries are needed to account for the damage induced by ionizing radiation, and different geometry models can be used for speed or accuracy reasons. In this work, we use the Monte Carlo track structure tool TOPAS-nBio, built on top of Geant4-DNA, for simulation at the nanometer scale to evaluate differences among three DNA geometrical models in an entire cell nucleus, including a sphere/spheroid model specifically designed for this work. In addition to strand breaks, we explicitly consider the direct, quasi-direct, and indirect damage induced to DNA base moieties. We use results from the literature to determine the best values for the relevant parameters. For example, the proportion of hydroxyl radical reactions between base moieties was 80%, and between backbone, moieties was 20%, the proportion of radical attacks leading to a strand break was 11%, and the expected ratio of base damages and strand breaks was 2.5-3. Our results show that failure to update parameters for new geometric models can lead to significant differences in predicted damage yields.


Assuntos
Dano ao DNA , DNA , Simulação por Computador , DNA/genética , Método de Monte Carlo , Radiação Ionizante
19.
Br J Radiol ; 95(1133): 20211175, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220723

RESUMO

OBJECTIVES: High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS: Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS: The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS: The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE: Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.


Assuntos
Segunda Neoplasia Primária , Terapia com Prótons , Terapia por Raios X , Humanos , Segunda Neoplasia Primária/radioterapia
20.
J Sci Med Sport ; 24(2): 164-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33187881

RESUMO

OBJECTIVES: To explore the different types of support (e.g., financial, informational) and support providers (e.g., fathers, siblings) in the development of male cricket players across different levels of skill expertise. METHODS: A quantitative questionnaire (developed as a part of a broader Australian Research Council Linkage project) assessing support providers and types of support accessed by players was distributed to participants through involvement with a national sporting organisation. Descriptive trends across support types for each provider were explored for the total cohort of athletes, n=1383 (as relative percentages), and community and elite differences were explored using chi-squared analyses (p<0.05). RESULTS: Mothers and fathers were primary providers of financial and emotional support (>80%), mentors offered meaningful sport-specific informational and technical (or coaching related) support, and siblings and peers played an integral development role in acting as fellow participants for practice and play. Access to coaching emerged as a dominant point of difference between community and elite players consistently across all support providers (p<0.05). Mentors and siblings also featured more frequently for elite players across broader ranges of support factors (p<0.05). CONCLUSION: Regardless of level of skill expertise, there were unique context-specific roles that different providers played in supporting cricket players. When differentiating between levels of expertise, elite players drew on more "contact" points to assist them in accessing the right type of coaching. Mentors and siblings also featured more frequently for elite players across a broader range of support factors. Taken together, these findings show that elite players are distinguished in their reliance on multiple components within a complex family system, bolstered by additional significant others. This work further underscores the previously limited exploration of social networks in athlete development, highlighting avenues for continued enquiry and action in sport development systems.


Assuntos
Desempenho Atlético/psicologia , Críquete/psicologia , Apoio Financeiro , Apoio Social , Adolescente , Adulto , Austrália , Amigos , Humanos , Masculino , Tutoria , Pais , Professores Escolares , Irmãos , Meio Social , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa