Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(1): e13275, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284604

RESUMO

Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.


Assuntos
Filmes Comestíveis , Humanos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Tecnologia de Alimentos , Biopolímeros
2.
Sensors (Basel) ; 21(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198533

RESUMO

An electrothermal piezoresistive cantilever (EPC) sensor is a low-cost MEMS resonance sensor that provides self-actuating and self-sensing capabilities. In the platform, which is of MEMS-cantilever shape, the EPC sensor offers several advantages in terms of physical, chemical, and biological sensing, e.g., high sensitivity, low cost, simple procedure, and quick response. However, a crosstalk effect is generated by the coupling of parasitic elements from the actuation part to the sensing part. This study presents a parasitic feedthrough subtraction (PFS) method to mitigate a crosstalk effect in an electrothermal piezoresistive cantilever (EPC) resonance sensor. The PFS method is employed to identify a resonance phase that is, furthermore, deployed to a phase-locked loop (PLL)-based system to track and lock the resonance frequency of the EPC sensor under cigarette smoke exposure. The performance of the EPC sensor is further evaluated and compared to an AFM-microcantilever sensor and a commercial particle counter (DC1100-PRO). The particle mass-concentration measurement result generated from cigarette-smoke puffs shows a good agreement between these three detectors.


Assuntos
Sistemas Microeletromecânicos , Fumar
3.
Sensors (Basel) ; 20(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033470

RESUMO

In this work, we present conductometric gas sensors based on p-type calcium iron oxide (CaFe2O4) nanoparticles. CaFe2O4 is a metal oxide (MOx) with a bandgap around 1.9 eV making it a suitable candidate for visible light-activated gas sensors. Our gas sensors were tested under a reducing gas (i.e., ethanol) by illuminating them with different light-emitting diode (LED) wavelengths (i.e., 465-640 nm). Regardless of their inferior response compared to the thermally activated counterparts, the developed sensors have shown their ability to detect ethanol down to 100 ppm in a reversible way and solely with the energy provided by an LED. The highest response was reached using a blue LED (465 nm) activation. Despite some responses found even in dark conditions, it was demonstrated that upon illumination the recovery after the ethanol exposure was improved, showing that the energy provided by the LEDs is sufficient to activate the desorption process between the ethanol and the CaFe2O4 surface.

4.
Sensors (Basel) ; 20(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979161

RESUMO

In this study, we investigate the performance of two piezoresistive micro-electro-mechanical system (MEMS)-based silicon cantilever sensors for measuring target analytes (i.e., ultrafine particulate matters). We use two different types of cantilevers with geometric dimensions of 1000 × 170 × 19.5 µm3 and 300 × 100 × 4 µm3, which refer to the 1st and 2nd types of cantilevers, respectively. For the first case, the cantilever is configured to detect the fundamental in-plane bending mode and is actuated using a resistive heater. Similarly, the second type of cantilever sensor is actuated using a meandering resistive heater (bimorph) and is designed for out-of-plane operation. We have successfully employed these two cantilevers to measure and monitor the changes of mass concentration of carbon nanoparticles in air, provided by atomizing suspensions of these nanoparticles into a sealed chamber, ranging from 0 to several tens of µg/m3 and oversize distributions from ~10 nm to ~350 nm. Here, we deploy both types of cantilever sensors and operate them simultaneously with a standard laboratory system (Fast Mobility Particle Sizer, FMPS, TSI 3091) as a reference.

5.
Sensors (Basel) ; 19(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052400

RESUMO

A cantilever is considered the most basic mechanical spring-mass system and has enormous application potential for sensors [...].

6.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795547

RESUMO

In this paper, a self-out-readable, miniaturized cantilever resonator for highly sensitive airborne nanoparticle (NP) detection is presented. The cantilever, which is operated in the fundamental in-plane resonance mode, is used as a microbalance with femtogram resolution. To maximize sensitivity and read-out signal amplitude of the piezo-resistive Wheatstone half bridge, the geometric parameters of the sensor design are optimized by finite element modelling (FEM). The electrical read-out of the cantilever movement is realized by piezo-resistive struts at the sides of the cantilever resonator that enable real-time tracking using a phase-locked loop (PLL) circuit. Cantilevers with minimum resonator mass of 1.72 ng and resonance frequency of ~440 kHz were fabricated, providing a theoretical sensitivity of 7.8 fg/Hz. In addition, for electrostatic NP collection, the cantilever has a negative-biased electrode located at its free end. Moreover, the counter-electrode surrounding the cantilever and a µ-channel, guiding the particle-laden air flow towards the cantilever, are integrated with the sensor chip. µ-channels and varying sampling voltages will also be used to accomplish particle separation for size-selective NP detection. To sum up, the presented airborne NP sensor is expected to demonstrate significant improvements in the field of handheld, micro-/nanoelectromechanical systems (M/NEMS)-based NP monitoring devices.

7.
Sensors (Basel) ; 19(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862101

RESUMO

Continuous cell culture monitoring as a way of investigating growth, proliferation, and kinetics of biological experiments is in high demand. However, commercially available solutions are typically expensive and large in size. Digital inline-holographic microscopes (DIHM) can provide a cost-effective alternative to conventional microscopes, bridging the gap towards live-cell culture imaging. In this work, a DIHM is built from inexpensive components and applied to different cell cultures. The images are reconstructed by computational methods and the data are analyzed with particle detection and tracking methods. Counting of cells as well as movement tracking of living cells is demonstrated, showing the feasibility of using a field-portable DIHM for basic cell culture investigation and bringing about the potential to deeply understand cell motility.


Assuntos
Rastreamento de Células/métodos , Microscopia/métodos , Técnicas de Cultura de Células , Holografia/métodos , Humanos
8.
Nanotechnology ; 28(9): 095206, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28067211

RESUMO

Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

10.
ACS Omega ; 9(27): 29840-29847, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005793

RESUMO

Nanofibers made of different materials have been continuously studied and widely used as membranes due to their simple fabrication techniques and tunable surface characteristics. In this work, we developed polyacrylonitrile (PAN) nanofiber membranes by the electrospinning method and blended them with polysulfone (PSU) to obtain superhydrophobic surfaces on the fiber structures. The scanning electron microscopy (SEM) images show that the fabricated nanofibers have smooth and continuous morphology. In addition, to observe the effect of the PSU-based blending material, Fourier-transform infrared (FTIR) spectra of the samples were acquired, providing chemical compositions of the bare and PSU-blended PAN nanofibers. The fabricated PSU/PAN composite nanofibers have a diameter range of 222-392 nm. In terms of the wettability, the measured water contact angle (WCA) value of the PAN nanofibers was improved from (14 ± 1)° to (156 ± 6)°, (160 ± 4)°, (156 ± 6)°, and (158 ± 4)° after being blended with PSU solutions having concentrations of 0.5, 1, 1.5, and 2 wt %, respectively. This result has proven that the PAN nanofiber surfaces can be tuned from hydrophilic to superhydrophobic characteristics simply by introducing PSU into the PAN solution prior to electrospinning, where a small PSU concentration of 0.5% has been sufficient to provide the desired effect. Owing to its low-cost and highly efficient process, this strategy may be further explored for other types of polymer-based nanofibers.

11.
Microsyst Nanoeng ; 10: 27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384678

RESUMO

Since the performance of micro-electro-mechanical system (MEMS)-based microphones is approaching fundamental physical, design, and material limits, it has become challenging to improve them. Several works have demonstrated graphene's suitability as a microphone diaphragm. The potential for achieving smaller, more sensitive, and scalable on-chip MEMS microphones is yet to be determined. To address large graphene sizes, graphene-polymer heterostructures have been proposed, but they compromise performance due to added polymer mass and stiffness. This work demonstrates the first wafer-scale integrated MEMS condenser microphones with diameters of 2R = 220-320 µm, thickness of 7 nm multi-layer graphene, that is suspended over a back-plate with a residual gap of 5 µm. The microphones are manufactured with MEMS compatible wafer-scale technologies without any transfer steps or polymer layers that are more prone to contaminate and wrinkle the graphene. Different designs, all electrically integrated are fabricated and characterized allowing us to study the effects of the introduction of a back-plate for capacitive read-out. The devices show high mechanical compliances Cm = 0.081-1.07 µmPa-1 (10-100 × higher than the silicon reported in the state-of-the-art diaphragms) and pull-in voltages in the range of 2-9.5 V. In addition, to validate the proof of concept, we have electrically characterized the graphene microphone when subjected to sound actuation. An estimated sensitivity of S1kHz = 24.3-321 mV Pa-1 for a Vbias = 1.5 V was determined, which is 1.9-25.5 × higher than of state-of-the-art microphone devices while having a ~9 × smaller area.

12.
ACS Biomater Sci Eng ; 10(4): 2041-2061, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526408

RESUMO

In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.


Assuntos
Flavivirus , Ácidos Nucleicos Peptídicos , Animais , Flavivirus/química , Peptídeos/química
13.
Chem Asian J ; 19(7): e202400036, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38414228

RESUMO

The silicon (Si) offers enormous theoretical capacity as a lithium-ion battery (LIB) anode. However, the low charge mobility in Si particles hinders its application for high current loading. In this study, ball-milled phosphorus-doped Si nanoparticles encapsulated with nitrogen-doped carbon (P-Si@N-C) are employed as an anode for LIBs. P-doped Si nanoparticles are first obtained via ball-milling and calcination of Si with phosphoric acid. N-doped carbon encapsulation is then introduced via carbonization of the surfactant-assisted polymerization of pyrrole monomer on P-doped Si. While P dopant is required to support the stability at high current density, the encapsulation of Si particles with N-doped carbon is influential in enhancing the overall Li+ diffusivity of the Si anode. The combined approaches improve the anode's Li+ diffusivity up to tenfold compared to the untreated anode. It leads to exceptional anode stability at a high current, retaining 87 % of its initial capacity under a large current rate of 4000 mA g-1. The full-cell comprising P-Si@N-C anode and LiFePO4 cathode demonstrates 94 % capacity retention of its initial capacity after 100 cycles at 1 C. This study explores the effective strategies to improve Li+ diffusivity for high-rate Si-based anode.

14.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(10): 1286-1294, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37647181

RESUMO

In this work, novel airborne capacitive micromachined ultrasonic transducers (CMUTs) based on a dual-backplate (DBP) technology are presented. In contrast to conventional CMUTs, these transducers use a three-electrode-based capacitive system, where the membrane is placed between two highly-perforated counter electrodes, enabling enlarged displacement amplitudes in electrostatic actuation and wide and tunable bandwidth (BW) due to a ventilated air cavity. Fabricated DBP-CMUT prototypes therefore show exceptionally high receive and transmit sensitivities of -34.5 dB(V/Pa) and 259 nm/V, respectively, in their 84-kHz resonance. The viscous dissipation introduced by ventilating the cavity results in a wide factional BW (FBW) of 29%. Applicability of the developed CMUT for airborne ranging is demonstrated in pulse-echo-based ranging measurements, where the distance of a sound-reflecting metal plate can be clearly detected by a single CMUT operated in a transceiver mode.

15.
NPJ Sci Food ; 7(1): 31, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328497

RESUMO

Authentication of meat floss origin has been highly critical for its consumers due to existing potential risks of having allergic diseases or religion perspective related to pork-containing foods. Herein, we developed and assessed a compact portable electronic nose (e-nose) comprising gas sensor array and supervised machine learning with a window time slicing method to sniff and to classify different meat floss products. We evaluated four different supervised learning methods for data classification (i.e., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors (k-NN), and random forest (RF)). Among them, an LDA model equipped with five-window-extracted feature yielded the highest accuracy values of >99% for both validation and testing data in discriminating beef, chicken, and pork flosses. The obtained e-nose results were correlated and confirmed with the spectral data from Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) measurements. We found that beef and chicken had similar compound groups (i.e., hydrocarbons and alcohol). Meanwhile, aldehyde compounds (e.g., dodecanal and 9-octadecanal) were found to be dominant in pork products. Based on its performance evaluation, the developed e-nose system shows promising results in food authenticity testing, which paves the way for ubiquitously detecting deception and food fraud attempts.

16.
J Mater Chem B ; 11(48): 11588-11599, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018444

RESUMO

This study reports on the modification of surface plasmon resonance (SPR) chips with molybdenum disulfide-molybdenum trioxide (MoS2-MoO3) microflowers to detect the tuberculosis (TB) markers of CFP-10. The MoS2-MoO3 microflowers were prepared by hydrothermal methods with variations in the pH and amount of trisodium citrate (Na3Ct), which were projected to influence the shape and size of microflower particles. The analysis shows that optimum MoS2-MoO3 hybrid microflowers were obtained at neutral pH using 0.5 g Na3Ct. The modified SPR biosensor exhibits a ten times higher response than the bare Au. Moreover, increasing MoS2-MoO3 thickness results in a higher detection response, sensitivity, and a smaller limit of detection (LOD). Using the optimized material composition, the Au/MoS2-MoO3-integrated SPR sensor can demonstrate sensitivity and LOD of 1.005 and 3.45 ng mL-1, respectively. This biosensor also has good selectivity, stability, and reproducibility based on cross-sensitivity characterization with other analytes and repeated measurements on several chips with different storing times and fabrication batch. Therefore, this proposed SPR biosensor possesses high potential to be further developed and applied as a detection technology for CFP-10 in monitoring and diagnosing TB.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Molibdênio/química , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
17.
Acta Biomater ; 143: 39-51, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314365

RESUMO

The possibility to produce laser action involving biomaterials, in particular (single) biological cells, has fostered the development of cellular lasers as a novel approach in biophotonics. In this respect, cells that are engineered to carry gain medium (e.g., fluorescent dyes or proteins) are placed inside an optical cavity (i.e., typically a sandwich of highly reflective mirrors), allowing the generation of stimulated emission upon sufficient optical pumping. In another scenario, micron-sized optical resonators supporting whispering-gallery mode (WGM) or semiconductor-based laser probes can be internalized by the cells and support light amplification. This review summarizes the recent advances in the fields of biolasers and cellular lasers, and most importantly, highlights their potential applications in the fields of in vitro and in vivo cell imaging and analysis. They include biosensing (e.g., in vitro detection of sodium chloride (NaCl) concentration), cancer cell imaging, laser-emission-based microscope, cell tracking, cell distinction study, and tissue contraction monitoring in zebrafish. Lastly, several fundamental issues in developing cellular lasers including laser probe fabrication, biocompatibility of the system, and alteration of local refractive index of optical cavities due to protein absorption or probe aggregation are described. Cellular lasers are foreseen as a promising tool to study numerous biological and biophysical phenomena. STATEMENT OF SIGNIFICANCE: Biolasers are generation of laser involving biological materials. Biomaterials, including single cells, can be engineered to incorporate laser probes or fluorescent proteins or fluorophores, and the resulting light emission can be coupled to optical resonator, allowing generation of cellular laser emission upon optical pumping. Unlike fluorescence, this stimulated emission is very sensitive and is capable of detecting small alterations in the optical property of the cells and their environment. In this review, recent development and applications of cellular lasers in the fields of in vitro and in vivo cell imaging, cell tracking, biosensing, and cell/tissue analysis are highlighted. Several challenges in developing cellular lasers including probe fabrication and biocompatibility as well as alteration of cellular environment are explained.


Assuntos
Lasers , Peixe-Zebra , Animais , Materiais Biocompatíveis , Rastreamento de Células , Corantes Fluorescentes
18.
Anal Methods ; 14(47): 4956-4966, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36440647

RESUMO

The chemical modification of polymer nanofiber-based ammonia sensors by introducing dopants into the active layers has been proven as one of the low-cost routes to enhance their sensing performance. Herein, we investigate the influence of different citric acid (CA) concentrations on electrospun polyvinyl acetate (PVAc) nanofibers coated on quartz crystal microbalance (QCM) transducers as gravimetric ammonia sensors. The developed CA-doped PVAc nanofiber sensors are tested against various concentrations of ammonia vapors, in which their key sensing performance parameters (i.e., sensitivity, limit of detection (LOD), limit of quantification (LOQ), and repeatability) are studied in detail. The sensitivity and LOD values of 1.34 Hz ppm-1 and 1 ppm, respectively, can be obtained during ammonia exposure assessment. Adding CA dopants with a higher concentration not only increases the sensor sensitivity linearly, but also prolongs both response and recovery times. This finding allows us to better understand the dopant concentration effect, which subsequently can result in an appropriate strategy for manufacturing high-performance portable nanofiber-based sensing devices.


Assuntos
Amônia
19.
J Colloid Interface Sci ; 622: 914-923, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561611

RESUMO

Generation of amplified stimulated emission inside mammalian cells has paved the way for a novel bioimaging and cell sensing approach. Single cells carrying gain media (e.g., fluorescent molecules) are placed inside an optical cavity, allowing the production of intracellular laser emission upon sufficient optical pumping. Here, we investigate the possibility to trigger another amplified emission phenomenon (i.e., amplified spontaneous emission or ASE) inside two different cell types, namely macrophage and epithelial cells from different species and tissues, in the presence of a poorly reflecting cavity. Furthermore, the resulting ASE properties can be enhanced by introducing plasmonic nanoparticles. The presence of gold nanoparticles (AuNPs) in rhodamine 6G-labeled A549 epithelial cells results in higher intensity and lowered ASE threshold in comparison to cells without nanoparticles, due to the effect of plasmonic field enhancement. An increase in intracellular concentration of AuNPs in rhodamine 6G-labeled macrophages is, however, responsible for the twofold increase in the ASE threshold and a reduction in the ASE intensity, dominantly due to a suppressed in and out-coupling of light at high nanoparticle concentrations.


Assuntos
Ouro , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos
20.
Artif Intell Med ; 129: 102323, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35659391

RESUMO

Breath pattern analysis based on an electronic nose (e-nose), which is a noninvasive, fast, and low-cost method, has been continuously used for detecting human diseases, including the coronavirus disease 2019 (COVID-19). Nevertheless, having big data with several available features is not always beneficial because only a few of them will be relevant and useful to distinguish different breath samples (i.e., positive and negative COVID-19 samples). In this study, we develop a hybrid machine learning-based algorithm combining hierarchical agglomerative clustering analysis and permutation feature importance method to improve the data analysis of a portable e-nose for COVID-19 detection (GeNose C19). Utilizing this learning approach, we can obtain an effective and optimum feature combination, enabling the reduction by half of the number of employed sensors without downgrading the classification model performance. Based on the cross-validation test results on the training data, the hybrid algorithm can result in accuracy, sensitivity, and specificity values of (86 ± 3)%, (88 ± 6)%, and (84 ± 6)%, respectively. Meanwhile, for the testing data, a value of 87% is obtained for all the three metrics. These results exhibit the feasibility of using this hybrid filter-wrapper feature-selection method to pave the way for optimizing the GeNose C19 performance.


Assuntos
COVID-19 , Nariz Eletrônico , Testes Respiratórios/métodos , Análise por Conglomerados , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa