Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nanobiotechnology ; 20(1): 417, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123677

RESUMO

BACKGROUND: While improvements in immunoradiotherapy have significantly improved outcomes for cancer patients, this treatment approach has nevertheless proven ineffective at controlling the majority of malignancies. One of the mechanisms of resistance to immunoradiotherapy is that immune cells may be suppressed via the myriad of different immune checkpoint receptors. Therefore, simultaneous blockade of multiple immune checkpoint receptors may enhance the treatment efficacy of immunoradiotherapy. METHODS: We combined NBTXR3-enhanced localized radiation with the simultaneous blockade of three different checkpoint receptors: PD1, LAG3, and TIGIT, and tested the treatment efficacy in an anti-PD1-resistant lung cancer model in mice. 129 Sv/Ev mice were inoculated with fifty thousand αPD1-resistant 344SQR cells in the right leg on day 0 to establish primary tumors and with the same number of cells in the left leg on day 4 to establish the secondary tumors. NBTXR3 was intratumorally injected into the primary tumors on day 7, which were irradiated with 12 Gy on days 8, 9, and 10. Anti-PD1 (200 µg), αLAG3 (200 µg), and αTIGIT (200 µg) were given to mice by intraperitoneal injections on days 5, 8, 11, 14, 21, 28, 35, and 42. RESULTS: This nanoparticle-mediated combination therapy is effective at controlling the growth of irradiated and distant unirradiated tumors, enhancing animal survival, and is the only one that led to the destruction of both tumors in approximately 30% of the treated mice. Corresponding with this improved response is robust activation of the immune response, as manifested by increased numbers of immune cells along with a transcriptional signature of both innate and adaptive immunity within the tumor. Furthermore, mice treated with this combinatorial therapy display immunological memory response when rechallenged by the same cancer cells, preventing tumor engraftment. CONCLUSION: Our results strongly attest to the efficacy and validity of combining nanoparticle-enhanced radiotherapy and simultaneous blockade of multiple immune checkpoint receptors and provide a pre-clinical rationale for investigating its translation into human patients.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Nanopartículas/uso terapêutico , Radioimunoterapia , Receptores Imunológicos , Resultado do Tratamento , Proteína do Gene 3 de Ativação de Linfócitos
2.
J Nanobiotechnology ; 19(1): 416, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895262

RESUMO

BACKGROUND: Combining radiotherapy with PD1 blockade has had impressive antitumor effects in preclinical models of metastatic lung cancer, although anti-PD1 resistance remains problematic. Here, we report results from a triple-combination therapy in which NBTXR3, a clinically approved nanoparticle radioenhancer, is combined with high-dose radiation (HDXRT) to a primary tumor plus low-dose radiation (LDXRT) to a secondary tumor along with checkpoint blockade in a mouse model of anti-PD1-resistant metastatic lung cancer. METHODS: Mice were inoculated with 344SQR cells in the right legs on day 0 (primary tumor) and the left legs on day 3 (secondary tumor). Immune checkpoint inhibitors (ICIs), including anti-PD1 (200 µg) and anti-CTLA4 (100 µg) were given intraperitoneally. Primary tumors were injected with NBTXR3 on day 6 and irradiated with 12-Gy (HDXRT) on days 7, 8, and 9; secondary tumors were irradiated with 1-Gy (LDXRT) on days 12 and 13. The survivor mice at day 178 were rechallenged with 344SQR cells and tumor growth monitored thereafter. RESULTS: NBTXR3 + HDXRT + LDXRT + ICIs had significant antitumor effects against both primary and secondary tumors, improving the survival rate from 0 to 50%. Immune profiling of the secondary tumors revealed that NBTXR3 + HDXRT + LDXRT increased CD8 T-cell infiltration and decreased the number of regulatory T (Treg) cells. Finally, none of the re-challenged mice developed tumors, and they had higher percentages of CD4 memory T cells and CD4 and CD8 T cells in both blood and spleen relative to untreated mice. CONCLUSIONS: NBTXR3 nanoparticle in combination with radioimmunotherapy significantly improves anti-PD1 resistant lung tumor control via promoting antitumor immune response.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Memória Imunológica/efeitos dos fármacos , Neoplasias Pulmonares , Nanopartículas/química , Radiossensibilizantes , Animais , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Neoplasias Experimentais , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Radioimunoterapia
3.
Cancer Immunol Res ; 11(4): 486-500, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700864

RESUMO

Diverse factors contribute to the limited clinical response to radiotherapy (RT) and immunotherapy in metastatic non-small cell lung cancer (NSCLC), among which is the ability of these tumors to recruit a retinue of suppressive immune cells-such as M2 tumor-associated macrophages (TAM)-thereby establishing an immunosuppressive tumor microenvironment that contributes to tumor progression and radio resistance. M2 TAMs are activated by the STAT6 signaling pathway. Therefore, we targeted STAT6 using an antisense oligonucleotide (ASO) along with hypofractionated RT (hRT; 3 fractions of 12 Gy each) to primary tumors in three bilateral murine NSCLC models (Lewis lung carcinoma, 344SQ-parental, and anti-PD-1-resistant 344SQ lung adenocarcinomas). We found that STAT6 ASO plus hRT slowed growth of both primary and abscopal tumors, decreased lung metastases, and extended survival. Interrogating the mechanism of action showed reduced M2 macrophage tumor infiltration, enhanced TH1 polarization, improved T-cell and macrophage function, and decreased TGFß levels. The addition of anti-PD-1 further enhanced systemic antitumor responses. These results provide a preclinical rationale for the pursuit of an alternative therapeutic approach for patients with immune-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Lewis , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/metabolismo , Macrófagos , Carcinoma Pulmonar de Lewis/patologia , Microambiente Tumoral , Fator de Transcrição STAT6/metabolismo
4.
Cancers (Basel) ; 14(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008385

RESUMO

Tumors deploy various immune-evasion mechanisms that create a suppressive environment and render effector T-cells exhausted and inactive. Therefore, a rational utilization of checkpoint inhibitors may alleviate exhaustion and may partially restore antitumor functions. However, in high-tumor-burden models, the checkpoint blockade fails to maintain optimal efficacy, and other interventions are necessary to overcome the inhibitory tumor stroma. One such strategy is the use of radiotherapy to reset the tumor microenvironment and maximize systemic antitumor outcomes. In this study, we propose the use of anti-PD1 and anti-TIGIT checkpoint inhibitors in conjunction with our novel RadScopal technique to battle highly metastatic lung adenocarcinoma tumors, bilaterally established in 129Sv/Ev mice, to mimic high-tumor-burden settings. The RadScopal approach is comprised of high-dose radiation directed at primary tumors with low-dose radiation delivered to secondary tumors to improve the outcomes of systemic immunotherapy. Indeed, the triple therapy with RadScopal + anti-TIGIT + anti-PD1 was able to prolong the survival of treated mice and halted the growth of both primary and secondary tumors. Lung metastasis counts were also significantly reduced. In addition, the low-dose radiation component reduced TIGIT receptor (PVR) expression by tumor-associated macrophages and dendritic cells in secondary tumors. Finally, low-dose radiation within triple therapy decreased the percentages of TIGIT+ exhausted T-cells and TIGIT+ regulatory T-cells. Together, our translational approach provides a new treatment alternative for cases refractory to other checkpoints and may bring immunotherapy into a new realm of systemic disease control.

5.
Front Immunol ; 13: 984318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275767

RESUMO

Radiation therapy (XRT) has a well-established role in cancer treatment. Given the encouraging results on immunostimulatory effects, radiation has been increasingly used with immune-check-point inhibitors in metastatic disease, especially when immunotherapy fails due to tumor immune evasion. We hypothesized that using high-dose stereotactic radiation in cycles (pulses) would increase T-cell priming and repertoire with each pulse and build immune memory in an incremental manner. To prove this hypothesis, we studied the combination of anti-CTLA-4 and Pulsed radiation therapy in our 344SQ non-small cell lung adenocarcinoma murine model. Primary and secondary tumors were bilaterally implanted in 129Sv/Ev mice. In the Pulsed XRT group, both primary and secondary tumors received 12Gyx2 radiation one week apart, and blood was collected seven days afterwards for TCR repertoire analysis. As for the delayed-Pulse group, primary tumors received 12Gyx2, and after a window of two weeks, the secondary tumors received 12Gyx2. Blood was collected seven days after the second cycle of radiation. The immunotherapy backbone for both groups was anti-CTLA-4 antibody to help with priming. Treatment with Pulsed XRT + anti-CTLA-4 led to significantly improved survival and resulted in a delayed tumor growth, where we observed enhanced antitumor efficacy at primary tumor sites beyond XRT + anti-CTLA-4 treatment group. More importantly, Pulsed XRT treatment led to increased CD4+ effector memory compared to single-cycle XRT. Pulsed XRT demonstrated superior efficacy to XRT in driving antitumor effects that were largely dependent on CD4+ T cells and partially dependent on CD8+ T cells. These results suggest that combinatorial strategies targeting multiple points of tumor immune evasion may lead to a robust and sustained antitumor response.


Assuntos
Adenocarcinoma , Linfócitos T CD8-Positivos , Camundongos , Animais , Carga Tumoral , Memória Imunológica , Imunoterapia , Receptores de Antígenos de Linfócitos T
6.
Transl Oncol ; 14(2): 100983, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33340886

RESUMO

Radiotherapy (RT) has been used to control tumors by physically damaging DNA and inducing apoptosis; it also promotes antitumor immune responses via neoantigens release and augmenting immune-oncology agents to elicit systemic response. Tumor regression after RT can recruit inflammatory cells, such as tumor-associated macrophages and CD11b+ myeloid cell populations, a major subset of which may actually be immunosuppressive. However, these inflammatory cells also express Toll-like receptors (TLRs) that can be stimulated to reverse suppressive characteristics and promote systemic antitumor outcomes. Here, we investigated the effects of adding CMP-001, a CpG-A oligodeoxynucleotide TLR9 agonist delivered in a virus-like particle (VLP), to RT in two murine models (344SQ metastatic lung adenocarcinoma and CT26 colon carcinoma). High-dose RT (12Gy x 3 fractions) significantly increased the percentages of plasmacytoid dendritic cells within the tumor islets 3- and 5-days post-RT; adding CMP-001 after RT also enhanced adaptive immunity by increasing the proportion of CD4+ and CD8+ T cells. RT plus CMP-001-mediated activation of the immune system led to significant inhibition of tumor growth at both primary and abscopal tumor sites, thereby suggesting a new combinatorial treatment strategy for systemic disease.

7.
Int J Radiat Oncol Biol Phys ; 111(3): 647-657, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242713

RESUMO

PURPOSE: Radiation combined with PD1 blockade offers significant treatment benefits in several tumor types; however, anti-PD1 resistance precludes such benefits in many cases. Here we attempted to overcome anti-PD1 resistance by combining localized radiation with a radioenhancing nanoparticle (NBTXR3) and systemic anti-PD1 treatment to achieve abscopal effects in an anti-PD1-resistant mouse model of lung cancer. METHODS AND MATERIALS: Female 129Sv/Ev mice were inoculated with 344SQ anti-PD1-resistant (344SQR) or anti-PD1-sensitive (344SQP) metastatic lung cancer cells in the right leg on day 0 ("primary" tumor) and the left leg on day 4 ("secondary" tumor). Primary tumors were injected intratumorally with NBTXR3 on day 7 and were irradiated with 12 Gy on days 8, 9, and 10. Mice were given 6 intraperitoneal injections of anti-PD1. T cell receptor repertoire was analyzed in tumor samples with RNA sequencing, infiltration of CD8 T cells with immunohistochemical staining, and activities of various immune pathways with NanoString analysis. RESULTS: The triple combination of NBTXR3 with localized radiation and systemic anti-PD1 significantly delayed the growth of both irradiated and unirradiated tumors in both 344SQP and 344SQR tumor models. NBTXR3 remodeled the immune microenvironment of unirradiated tumors by triggering the activation of various immune pathways, increasing the number of CD8+ T cells, and modifying the T cell receptor repertoire in the 344SQR tumor model. CONCLUSIONS: The ability of NBTXR3 to evoke significant abscopal effects in both anti-PD1-sensitive and anti-PD1-resistant lung cancers could open the possibility of its use for treating patients with metastatic lung cancer regardless of sensitivity (or resistance) to immunotherapies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
8.
Cancer Immunol Res ; 8(7): 883-894, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32299915

RESUMO

Immune checkpoint inhibitors, such as anti-PD-1/PD-L1, have emerged as promising therapies for advanced non-small cell lung cancer (NSCLC). However, approximately 80% of patients do not respond to immunotherapy given alone because of intrinsic or acquired resistance. Radiotherapy (XRT) can overcome PD-1 resistance and improve treatment outcomes, but its efficacy remains suboptimal. The tyrosine phosphatase SHP-2, expressed in some cancers and in immune cells, has been shown to negatively affect antitumor immunity. Our hypothesis was that SHP-2 inhibition in combination with anti-PD-L1 would enhance immune-mediated responses to XRT and synergistically boost antitumor effects in an anti-PD-1-resistant mouse model. We treated 129Sv/Ev mice with anti-PD-1-resistant 344SQ NSCLC adenocarcinoma with oral SHP099 (a SHP-2 inhibitor) combined with XRT and intraperitoneal anti-PD-L1. Primary tumors were treated with XRT (three fractions of 12 Gy each), whereas abscopal (out-of-field) tumors were observed but not treated. XRT in combination with SHP099 and anti-PD-L1 promoted local and abscopal responses, reduced lung metastases, and improved mouse survival. XRT also increased SHP-2+ M1 tumor-associated macrophages in abscopal tumors (P = 0.019). The addition of SHP099 also associated with a higher M1/M2 ratio, greater numbers of CD8+ T cells, and fewer regulatory T cells. This triple-combination therapy had strong antitumor effects in a mouse model of anti-PD-1-resistant NSCLC and may be a novel therapeutic approach for anti-PD-1-resistant NSCLC in patients.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Piperidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quimiorradioterapia , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL
9.
J Immunother Cancer ; 8(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31996395

RESUMO

BACKGROUND: This study compared response rates and outcomes of combined radiotherapy and immunotherapy (iRT) based on the type of checkpoint inhibitor (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) vs antiprogrammed death-1 (PD1)) for metastatic non-small cell lung cancer (mNSCLC). METHODS: We retrospectively reviewed two prospective trials of radiation combined with anti-CTLA4 or anti-PD1 for patients with mNSCLC. Patients undergoing non-salvage stereotactic body radiation therapy (SBRT) to lung sites were selected from both trials and grouped by the immunotherapeutic compound received. Endpoints included in-field and out-of-field response rates, and overall response rate (complete or partial response) (all by response evaluation criteria in solid tumors). Progression-free survival (PFS) and overall survival (OS) were estimated with the Kaplan-Meier method. RESULTS: Median follow-up times for the 33 patients (n=17 SBRT+anti-CTLA4, n=16 SBRT+anti-PD1) were 19.6 and 19.9 months. Response rates for out-of-field lesions were similar between anti-PD1 (37%) and anti-CTLA4 (24%) (p=0.054). However, global response rates for all lesions were 24% anti-CTLA4 vs 56% anti-PD1 (p=0.194). The PFS was 76% for anti-CTLA4 vs 94% anti-PD1 at 3 months, 52% vs 87% at 6 months, 31% vs 80% at 12 months, and 23% vs 63% at 18 months (p=0.02). Respective OS values were 76% vs 87% at 6 months, 47% vs 80% at 12 months, and 39% vs 66% at 18 months (p=0.08). CONCLUSIONS: Both anti-CTLA4 and anti-PD1 agents prompt a similar degree of in-field and out-of-field responses after iRT, although the global response rate and PFS were statistically higher in the anti-PD1 cohort. Further dedicated study and biological mechanistic assessment is required. TRIAL REGISTRATION NUMBERS: NCT02239900 and NCT02444741.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Quimiorradioterapia , Ensaios Clínicos como Assunto , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
10.
Nat Commun ; 11(1): 4840, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973129

RESUMO

Immunotherapies revolutionized cancer treatment by harnessing the immune system to target cancer cells. However, most patients are resistant to immunotherapies and the mechanisms underlying this resistant is still poorly understood. Here, we report that overexpression of BMP7, a member of the TGFB superfamily, represents a mechanism for resistance to anti-PD1 therapy in preclinical models and in patients with disease progression while on immunotherapies. BMP7 secreted by tumor cells acts on macrophages and CD4+ T cells in the tumor microenvironment, inhibiting MAPK14 expression and impairing pro-inflammatory responses. Knockdown of BMP7 or its neutralization via follistatin in combination with anti-PD1 re-sensitizes resistant tumors to immunotherapies. Thus, we identify the BMP7 signaling pathway as a potential immunotherapeutic target in cancer.


Assuntos
Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Linfócitos T CD4-Positivos , Linhagem Celular Tumoral , Feminino , Folistatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Células RAW 264.7 , Proteína Smad1/metabolismo , Transcriptoma , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa