Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Nat Methods ; 20(3): 418-423, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585456

RESUMO

Recent advances in multiplexed imaging methods allow simultaneous detection of dozens of proteins and hundreds of RNAs, enabling deep spatial characterization of both healthy and diseased tissues. Parameters for the design of optimal multiplex imaging studies, especially those estimating how much area has to be imaged to capture all cell phenotype clusters, are lacking. Here, using a spatial transcriptomic atlas of healthy and tumor human tissues, we developed a statistical framework that determines the number and area of fields of view necessary to accurately identify all cell phenotypes that are part of a tissue. Using this strategy on imaging mass cytometry data, we identified a measurement of tissue spatial segregation that enables optimal experimental design. This strategy will enable an improved design of multiplexed imaging studies.


Assuntos
Neoplasias , Projetos de Pesquisa , Humanos , Diagnóstico por Imagem , RNA , Neoplasias/diagnóstico por imagem
2.
J Immunol ; 207(3): 849-859, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301848

RESUMO

A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Autoimunidade , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Variação Genética , Humanos , Tolerância Imunológica , Memória Imunológica , Ativação Linfocitária/genética , Mutação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética
3.
Am J Pathol ; 191(3): 454-462, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307036

RESUMO

Emerging data suggest that type 1 diabetes affects not only the ß-cell-containing islets of Langerhans, but also the surrounding exocrine compartment. Using digital pathology, machine learning algorithms were applied to high-resolution, whole-slide images of human pancreata to determine whether the tissue composition in individuals with or at risk for type 1 diabetes differs from those without diabetes. Transplant-grade pancreata from organ donors were evaluated from 16 nondiabetic autoantibody-negative controls, 8 nondiabetic autoantibody-positive subjects with increased type 1 diabetes risk, and 19 persons with type 1 diabetes (0 to 12 years' duration). HALO image analysis algorithms were implemented to compare architecture of the main pancreatic duct as well as cell size, density, and area of acinar, endocrine, ductal, and other nonendocrine, nonexocrine tissues. Type 1 diabetes was found to affect exocrine area, acinar cell density, and size, whereas the type of difference correlated with the presence or absence of insulin-positive cells remaining in the pancreas. These changes were not observed before disease onset, as indicated by modeling cross-sectional data from pancreata of autoantibody-positive subjects and those diagnosed with type 1 diabetes. These data provide novel insights into anatomic differences in type 1 diabetes pancreata and demonstrate that machine learning can be adapted for the evaluation of disease processes from cross-sectional data sets.


Assuntos
Algoritmos , Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/patologia , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Pâncreas/patologia , Adolescente , Autoanticorpos/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Insulina/análise , Pâncreas/imunologia , Pâncreas/metabolismo , Doadores de Tecidos
4.
Pediatr Diabetes ; 23(8): 1552-1559, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36062396

RESUMO

OBJECTIVE: Limited information is available regarding youth-onset diabetes in Mali. We investigated demographic, clinical, biochemical, and genetic features in new diabetes cases in children and adolescents. RESEARCH DESIGN AND METHODS: The study was conducted at Hôpital du Mali in Bamako. A total of 132 recently-diagnosed cases <21 years were enrolled. Demographic characteristics, clinical information, biochemical parameters (blood glucose, HbA1c, C-peptide, glutamic acid decarboxylase-65 (GAD-65) and islet antigen-2 (IA2) autoantibodies) were assessed. DNA was genotyped for HLA-DRB1 using high-resolution genotyping technology. RESULTS: A total of 130 cases were clinically diagnosed as type 1 diabetes (T1D), one with type 2 diabetes (T2D), and one with secondary diabetes. A total of 66 (50.8%) T1D cases were males and 64 (49.2%) females, with a mean age at diagnosis of 13.8 ± 4.4 years (range 0.8-20.7 years) peak onset of 15 years. 58 (44.6%) presented in diabetic ketoacidosis; with 28 (21.5%) IA2 positive, 76 (58.5%) GAD-65 positive, and 15 (11.5%) positive for both autoantibodies. HLA was also genotyped in 195 controls without diabetes. HLA-DRB1 genotyping of controls and 98 T1D cases revealed that DRB1*03:01, DRB1*04:05, and DRB1*09:01 alleles were predisposing for T1D (odds ratios [ORs]: 2.82, 14.76, and 3.48, p-values: 9.68E-5, 2.26E-10, and 8.36E-4, respectively), while DRB1*15:03 was protective (OR = 0.27; p-value = 1.73E-3). No significant differences were observed between T1D cases with and without GAD-65 and IA2 autoantibodies. Interestingly, mean C-peptide was 3.6 ± 2.7 ng/ml (1.2 ± 0.9 nmol/L) in T1D cases at diagnosis. CONCLUSIONS: C-peptide values were higher than expected in those diagnosed as T1D and autoantibody rates lower than in European populations. It is quite possible that some cases have an atypical form of T1D, ketosis-prone T2D, or youth-onset T2D. This study will help guide assessment and individual management of Malian diabetes cases, potentially enabling healthier outcomes.


Assuntos
Diabetes Mellitus Tipo 1 , Cadeias HLA-DRB1 , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Autoanticorpos/sangue , Autoanticorpos/química , Peptídeo C/sangue , Peptídeo C/química , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Glutamato Descarboxilase , Cadeias HLA-DRB1/genética , Mali/epidemiologia
5.
Diabetologia ; 64(10): 2279-2291, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274990

RESUMO

AIMS/HYPOTHESIS: Normal cellular prion protein (PrPC) is a conserved mammalian glycoprotein found on the outer plasma membrane leaflet through a glycophosphatidylinositol anchor. Although PrPC is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. The misfolded pathogenic isoform PrPSc (the scrapie form of PrP) is a causative agent of neurodegenerative prion diseases. The aim of this study is to evaluate PrPC localisation, expression and trafficking in pancreases from organ donors with and without type 1 diabetes and to infer PrPC function through studies on interacting protein partners. METHODS: In order to evaluate localisation and trafficking of PrPC in the human pancreas, 12 non-diabetic, 12 type 1 diabetic and 12 autoantibody-positive organ donor tissue samples were analysed using immunofluorescence analysis. Furthermore, total RNA was isolated from 29 non-diabetic, 29 type 1 diabetic and 24 autoantibody-positive donors to estimate PrPC expression in the human pancreas. Additionally, we performed PrPC-specific immunoblot analysis on total pancreatic protein from non-diabetic and type 1 diabetic organ donors to test whether changes in PrPC mRNA levels leads to a concomitant increase in PrPC protein levels in human pancreases. RESULTS: In non-diabetic and type 1 diabetic pancreases (the latter displaying both insulin-positive [INS(+)] and -negative [INS(-)] islets), we found PrPC in islets co-registering with beta cells in all INS(+) islets and, strikingly, unexpected activation of PrPC in alpha cells within diabetic INS(-) islets. We found PrPC localised to the plasma membrane and endoplasmic reticulum (ER) but not the Golgi, defining two cellular pools and an unconventional protein trafficking mechanism bypassing the Golgi. We demonstrate PrPC co-registration with established protein partners, neural cell adhesion molecule 1 (NCAM1) and stress-inducible phosphoprotein 1 (STI1; encoded by STIP1) on the plasma membrane and ER, respectively, linking PrPC function with cyto-protection, signalling, differentiation and morphogenesis. We demonstrate that both PRNP (encoding PrPC) and STIP1 gene expression are dramatically altered in type 1 diabetic and autoantibody-positive pancreases. CONCLUSIONS/INTERPRETATION: As the first study to address PrPC expression in non-diabetic and type 1 diabetic human pancreas, we provide new insights for PrPC in the pathogenesis of type 1 diabetes. We evaluated the cell-type specific expression of PrPC in the human pancreas and discovered possible connections with potential interacting proteins that we speculate might address mechanisms relevant to the role of PrPC in the human pancreas.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/metabolismo , Proteínas PrPC/metabolismo , Adolescente , Adulto , Autoanticorpos/sangue , Antígeno CD56/metabolismo , Membrana Celular/metabolismo , Criança , Retículo Endoplasmático/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Humanos , Imuno-Histoquímica , Anticorpos Anti-Insulina/imunologia , Masculino , Proteínas PrPC/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Doadores de Tecidos , Adulto Jovem
6.
Diabetologia ; 64(8): 1822-1833, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003304

RESUMO

AIMS/HYPOTHESIS: The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. METHODS: Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. RESULTS: Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. CONCLUSIONS/INTERPRETATION: Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation.


Assuntos
Transtornos Cronobiológicos/imunologia , Ritmo Circadiano/imunologia , Diabetes Mellitus Tipo 1/imunologia , Sistema Imunitário/fisiologia , Adolescente , Adulto , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Relógios Circadianos/genética , Células Dendríticas/imunologia , Feminino , Citometria de Fluxo , Humanos , Interleucina-6/sangue , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Adulto Jovem
7.
Metabolomics ; 17(11): 100, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775536

RESUMO

INTRODUCTION: Dogs with naturally occurring diabetes mellitus represent a potential model for human type 1 diabetes, yet significant knowledge voids exist in terms of the pathogenic mechanisms underlying the canine disorder. Untargeted metabolomic studies from a limited number of diabetic dogs identified similarities to humans with the disease. OBJECTIVE: To expand and validate earlier metabolomic studies, identify metabolites that differ consistently between diabetic and healthy dogs, and address whether certain metabolites might serve as disease biomarkers. METHODS: Untargeted metabolomic analysis via liquid chromatography-mass spectrometry was performed on serum from diabetic (n = 15) and control (n = 15) dogs. Results were combined with those of our previously published studies using identical methods (12 diabetic and 12 control dogs) to identify metabolites consistently different between the groups in all 54 dogs. Thirty-two candidate biomarkers were quantified using targeted metabolomics. Biomarker concentrations were compared between the groups using multiple linear regression (corrected P < 0.0051 considered significant). RESULTS: Untargeted metabolomics identified multiple persistent differences in serum metabolites in diabetic dogs compared with previous studies. Targeted metabolomics showed increases in gamma amino butyric acid, valine, leucine, isoleucine, citramalate, and 2-hydroxyisobutyric acid in diabetic versus control dogs while indoxyl sulfate, N-acetyl-L-aspartic acid, kynurenine, anthranilic acid, tyrosine, glutamine, and tauroursodeoxycholic acid were decreased. CONCLUSION: Several of these findings parallel metabolomic studies in both human diabetes and other animal models of this disease. Given recent studies on the role of GABA and branched chain amino acids in human diabetes, the increase in serum concentrations in canine diabetes warrants further study of these metabolites as potential biomarkers, and to identify similarity in mechanisms underlying this disease in humans and dogs.


Assuntos
Diabetes Mellitus Tipo 1 , Metabolômica , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Cromatografia Líquida/métodos , Cães , Metabolômica/métodos , Ácido gama-Aminobutírico
8.
Pediatr Diabetes ; 22(5): 749-757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837995

RESUMO

OBJECTIVE: To further understand clinical and biochemical features, and HLA-DRB1 genotypes, in new cases of diabetes in Sudanese children and adolescents. RESEARCH DESIGN AND METHODS: Demographic characteristics, clinical information, and biochemical parameters (blood glucose, HbA1c, C-peptide, autoantibodies against glutamic acid decarboxylase 65 [GADA] and insulinoma-associated protein-2 [IA-2A], and HLA-DRB1) were assessed in 99 individuals <18 years, recently (<18 months) clinically diagnosed with T1D. HLA-DRB1 genotypes for 56 of these Arab individuals with T1D were compared to a mixed control group of 198 healthy Arab (75%) and African (25%) individuals without T1D. RESULTS: Mean ± SD age at diagnosis was 10.1 ± 4.3 years (range 0.7-17.6 years) with mode at 9-12 years. A female preponderance was observed. Fifty-two individuals (55.3%) presented in diabetic ketoacidosis (DKA). Mean ± SD serum fasting C-peptide values were 0.22 ± 0.25 nmol/L (0.66±0.74 ng/ml). 31.3% were autoantibody negative, 53.4% were GADA positive, 27.2% were IA-2A positive, with 12.1% positive for both autoantibodies. Association analysis compared to 198 controls of similar ethnic origin revealed strong locus association with HLA-DRB1 (p < 2.4 × 10-14 ). Five HLA-DRB1 alleles exhibited significant T1D association: three alleles (DRB1*03:01, DRB1*04:02, and DRB1*04:05) were positively associated, while three (DRB1*10:01, DRB1*15:02, and DRB1*15:03) were protective. DRB1*03:01 had the strongest association (odds ratio = 5.04, p = 1.7 × 10-10 ). CONCLUSIONS: Young Sudanese individuals with T1D generally have similar characteristics to reported European-origin T1D populations. However, they have higher rates of DKA and slightly lower autoantibody rates than reported European-origin populations, and a particularly strong association with HLA-DRB1*03:01.


Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 1 , Cadeias HLA-DRB1/genética , Adolescente , Idade de Início , Autoanticorpos/sangue , Biomarcadores/sangue , Peptídeo C/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Cetoacidose Diabética/epidemiologia , Cetoacidose Diabética/genética , Feminino , Predisposição Genética para Doença , Genótipo , Glutamato Descarboxilase/imunologia , Humanos , Lactente , Masculino , Sudão/epidemiologia
9.
Proc Natl Acad Sci U S A ; 114(38): 10196-10201, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874568

RESUMO

Identified as a major biomarker for type 1 diabetes (T1D) diagnosis, zinc transporter 8 autoantibody (ZnT8A) has shown promise for staging disease risk and disease diagnosis. However, existing assays for ZnT8 autoantibody (ZnT8A) are limited to detection by soluble domains of ZnT8, owing to difficulties in maintaining proper folding of a full-length ZnT8 protein outside its native membrane environment. Through a combined bioengineering and nanotechnology approach, we have developed a proteoliposome-based full-length ZnT8 self-antigen (full-length ZnT8 proteoliposomes; PLR-ZnT8) for efficient detection of ZnT8A on a plasmonic gold chip (pGOLD). The protective lipid matrix of proteoliposomes improved the proper folding and structural stability of full-length ZnT8, helping PLR-ZnT8 immobilized on pGOLD (PLR-ZnT8/pGOLD) achieve high-affinity capture of ZnT8A from T1D sera. Our PLR-ZnT8/pGOLD exhibited efficient ZnT8A detection for T1D diagnosis with ∼76% sensitivity and ∼97% specificity (n = 307), superior to assays based on detergent-solubilized full-length ZnT8 and the C-terminal domain of ZnT8. Multiplexed assays using pGOLD were also developed for simultaneous detection of ZnT8A, islet antigen 2 autoantibody, and glutamic acid decarboxylase autoantibody for diagnosing T1D.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico , Transportador 8 de Zinco/sangue , Células HEK293 , Humanos , Análise Serial de Proteínas , Proteolipídeos , Transportador 8 de Zinco/imunologia
10.
Angew Chem Int Ed Engl ; 59(50): 22584-22590, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32762062

RESUMO

Linking molecular and chemical changes to human disease states depends on the availability of appropriate clinical samples, mostly preserved as formalin-fixed paraffin-embedded (FFPE) specimens stored in tissue banks. Mass spectrometry imaging (MSI) enables the visualization of the spatiotemporal distribution of molecules in biological samples. However, MSI is not effective for imaging FFPE tissues because of the chemical modifications of analytes, including complex crosslinking between nucleophilic moieties. Here we used an MS-compatible inorganic nucleophile, hydroxylamine hydrochloride, to chemically reverse inter- and intra-crosslinks from endogenous molecules. The analyte restoration appears specific for formaldehyde-reactive amino acids. This approach enabled the MSI-assisted localization of pancreatic peptides expressed in the alpha, beta, and gamma cells. Pancreatic islet-like distributions of islet hormones were observed in human FFPE tissues preserved for more than five years, demonstrating that samples from biobanks can effectively be investigated with MSI.


Assuntos
Reagentes de Ligações Cruzadas/química , Formaldeído/isolamento & purificação , Hidroxilamina/química , Inclusão em Parafina , Hormônios Peptídicos/análise , Aminoácidos/química , Formaldeído/química , Humanos , Espectrometria de Massas
11.
J Immunol ; 199(11): 3757-3770, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055002

RESUMO

In NOD mice and also likely humans, B lymphocytes play an important role as APC-expanding autoreactive T cell responses ultimately causing type 1 diabetes (T1D). Currently, humans at high future T1D risk can only be identified at late prodromal stages of disease indicated by markers such as insulin autoantibodies. When commenced in already insulin autoantibody+ NOD mice, continuous BAFFR-Fc treatment alone or in combination with anti-CD20 (designated combo therapy) inhibited T1D development. Despite eliciting broader B lymphocyte depletion, continuous combo therapy afforded no greater T1D protection than did BAFFR-Fc alone. As previously observed, late disease stage-initiated anti-CD20 monotherapy did not inhibit T1D, and in this study was additionally found to be associated with development of drug-blocking Abs. Promisingly, NOD mice given transient late disease stage BAFFR-Fc monotherapy were rendered T1D resistant. However, combo treatment abrogated the protective effect of transient BAFFR-Fc monotherapy. NOD mice receiving transient BAFF blockade were characterized by an enrichment of regulatory B lymphocytes that inhibit T1D development through IL-10 production, but this population is sensitive to deletion by anti-CD20 treatment. B lymphocytes from transient BAFFR-Fc-treated mice suppressed T cell proliferation to a greater extent than did those from controls. Proportions of B lymphocytes expressing CD73, an ecto-enzyme operating in a pathway converting proinflammatory ATP to anti-inflammatory adenosine, were also temporarily increased by transient BAFFR-Fc treatment, but not anti-CD20 therapy. These collective studies indicate transient BAFFR-Fc-mediated B lymphocyte depletion elicits long-term T1D protection by enriching regulatory B lymphocytes that are deleted by anti-CD20 cotherapy.


Assuntos
Fator Ativador de Células B/antagonistas & inibidores , Linfócitos B Reguladores/imunologia , Diabetes Mellitus Tipo 1/imunologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoterapia/métodos , Rituximab/uso terapêutico , Linfócitos T/imunologia , Animais , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/uso terapêutico , Proliferação de Células , Células Cultivadas , Terapia Combinada , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Terapia de Imunossupressão , Interleucina-10/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
12.
J Immunol ; 198(11): 4255-4267, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461573

RESUMO

B lymphocytes play a key role in type 1 diabetes (T1D) development by serving as a subset of APCs preferentially supporting the expansion of autoreactive pathogenic T cells. As a result of their pathogenic importance, B lymphocyte-targeted therapies have received considerable interest as potential T1D interventions. Unfortunately, the B lymphocyte-directed T1D interventions tested to date failed to halt ß cell demise. IgG autoantibodies marking humans at future risk for T1D indicate that B lymphocytes producing them have undergone the affinity-maturation processes of class switch recombination and, possibly, somatic hypermutation. This study found that CRISPR/Cas9-mediated ablation of the activation-induced cytidine deaminase gene required for class switch recombination/somatic hypermutation induction inhibits T1D development in the NOD mouse model. The activation-induced cytidine deaminase protein induces genome-wide DNA breaks that, if not repaired through RAD51-mediated homologous recombination, result in B lymphocyte death. Treatment with the RAD51 inhibitor 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid also strongly inhibited T1D development in NOD mice. The genetic and small molecule-targeting approaches expanded CD73+ B lymphocytes that exert regulatory activity suppressing diabetogenic T cell responses. Hence, an initial CRISPR/Cas9-mediated genetic modification approach has identified the AID/RAD51 axis as a target for a potentially clinically translatable pharmacological approach that can block T1D development by converting B lymphocytes to a disease-inhibitory CD73+ regulatory state.


Assuntos
Linfócitos B Reguladores/imunologia , Proteínas de Transporte/antagonistas & inibidores , Citidina Desaminase/antagonistas & inibidores , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Ativação Linfocitária , Proteínas Nucleares/antagonistas & inibidores , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , 5'-Nucleotidase/imunologia , Animais , Autoanticorpos/imunologia , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA , Diabetes Mellitus Experimental , Switching de Imunoglobulina , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA , Hipermutação Somática de Imunoglobulina
13.
Proc Natl Acad Sci U S A ; 113(13): E1826-34, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976580

RESUMO

Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic ß-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.


Assuntos
Metilação de DNA , DNA/sangue , Células Secretoras de Insulina/patologia , Oligodendroglia/patologia , Adolescente , Adulto , Idoso , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Estudos de Casos e Controles , Morte Celular , Criança , Pré-Escolar , DNA/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Especificidade de Órgãos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Regiões Promotoras Genéticas , Sensibilidade e Especificidade , Adulto Jovem
14.
Diabetologia ; 61(4): 954-958, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29128936

RESUMO

AIMS/HYPOTHESIS: Diabetes research studies routinely rely upon the use of tissue samples from human organ donors. It remains unclear whether the length of hospital stay prior to organ donation affects the presence of cells infiltrating the pancreas or the frequency of replicating beta cells. METHODS: To address this, 39 organ donors without diabetes were matched for age, sex, BMI and ethnicity in groups of three. Within each group, donors varied by length of hospital stay immediately prior to organ donation (<3 days, 3 to <6 days, or ≥6 days). Serial sections from tissue blocks in the pancreas head, body and tail regions were immunohistochemically double stained for insulin and CD45, CD68, or Ki67. Slides were electronically scanned and quantitatively analysed for cell positivity. RESULTS: No differences in CD45+, CD68+, insulin+, Ki67+ or Ki67+/insulin+ cell frequencies were found when donors were grouped according to duration of hospital stay. Likewise, no interactions were observed between hospitalisation group and pancreas region, age, or both; however, with Ki67 staining, cell frequencies were greater in the body vs the tail region of the pancreas (∆ 0.65 [unadjusted 95% CI 0.25, 1.04]; p = 0.002) from donors <12 year of age. Interestingly, frequencies were less in the body vs tail region of the pancreas for both CD45+ cells (∆ -0.91 [95% CI -1.71, -0.10]; p = 0.024) and insulin+ cells (∆ -0.72 [95% CI -1.10, -0.34]; p < 0.001). CONCLUSIONS/INTERPRETATION: This study suggests that immune or replicating beta cell frequencies are not affected by the length of hospital stay prior to donor death in pancreases used for research. DATA AVAILABILITY: All referenced macros (adopted and developed), calculations, programming code and numerical dataset files (including individual-level donor data) are freely available on GitHub through Zenodo at https://doi.org/10.5281/zenodo.1034422.


Assuntos
Hospitalização , Tempo de Internação , Transplante de Pâncreas , Pâncreas/patologia , Adolescente , Índice de Massa Corporal , Criança , Morte , Diabetes Mellitus/patologia , Feminino , Humanos , Imuno-Histoquímica , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Resultado do Tratamento , Adulto Jovem
15.
J Proteome Res ; 16(1): 195-203, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27690455

RESUMO

We performed an unbiased proteome-scale profiling of humoral autoimmunity in recent-onset type 1 diabetes (T1D) patients and nondiabetic controls against ∼10 000 human proteins using a Nucleic Acid Programmable Protein Array (NAPPA) platform, complemented by a knowledge-based selection of proteins from genes enriched in human pancreas. Although the global response was similar between cases and controls, we identified and then validated six specific novel T1D-associated autoantibodies (AAbs) with sensitivities that ranged from 16 to 27% at 95% specificity. These included AAbs against PTPRN2, MLH1, MTIF3, PPIL2, NUP50 (from NAPPA screening), and QRFPR (by targeted ELISA). Immunohistochemistry demonstrated that NUP50 protein behaved differently in islet cells, where it stained both nucleus and cytoplasm, compared with only nuclear staining in exocrine pancreas. Conversely, PPIL2 staining was absent in islet cells, despite its presence in exocrine cells. The combination of anti-PTPRN2, -MLH1, -PPIL2, and -QRFPR had an AUC of 0.74 and 37.5% sensitivity at 95% specificity. These data indicate that these markers behave independently and support the use of unbiased screening to find biomarkers because the majority was not predicted based on predicted abundance. Our study enriches the knowledge of the "autoantibody-ome" in unprecedented breadth and width.


Assuntos
Autoanticorpos/genética , Ciclofilinas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Proteína 1 Homóloga a MutL/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Receptores Acoplados a Proteínas G/imunologia , Adolescente , Especificidade de Anticorpos , Autoanticorpos/biossíntese , Autoimunidade/genética , Biomarcadores/análise , Estudos de Casos e Controles , Criança , Ciclofilinas/genética , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Imunidade Humoral/genética , Masculino , Proteína 1 Homóloga a MutL/genética , Pâncreas/imunologia , Pâncreas/patologia , Análise Serial de Proteínas , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Receptores Acoplados a Proteínas G/genética , Sensibilidade e Especificidade , Adulto Jovem
16.
Lab Invest ; 97(5): 577-590, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218739

RESUMO

During progression to type 1 diabetes, insulin-producing ß-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered ß-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Feminino , Glucagon/análise , Glucagon/metabolismo , Antígenos HLA-D/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/metabolismo , Ilhotas Pancreáticas/química , Masculino , Camundongos , Camundongos Endogâmicos NOD , Proteínas/análise , Proteínas/antagonistas & inibidores , Transativadores/metabolismo
17.
Blood ; 125(24): 3778-88, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25904246

RESUMO

Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.


Assuntos
Mieloma Múltiplo/terapia , Myxoma virus/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Ativação Linfocitária , Infecções por Poxviridae/imunologia , Linfócitos T/citologia , Infecções Tumorais por Vírus/imunologia
18.
Diabetologia ; 59(1): 217-221, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26358584

RESUMO

AIMS/HYPOTHESIS: Previous studies of pancreases obtained at autopsy or by radiography note reduced pancreas weight (PW) and size, respectively, in type 1 diabetes; this finding is widely considered to be the result of chronic insulinopenia. This literature is, however, limited with respect to the influence of age, sex, anthropometric factors and disease duration on these observations. Moreover, data are sparse for young children, a group of particular interest for type 1 diabetes. We hypothesised that the pancreas-to-body weight ratio would normalise confounding inter-subject factors, thereby permitting better characterisation of PW in type 1 diabetes. METHODS: Transplant-grade pancreases were recovered from 216 organ donors with type 1 diabetes (n = 90), type 2 diabetes (n = 40) and no diabetes (n = 86). Whole-organ and head, body and tail weights were determined. The relative PW (RPW; PW [g] / body weight [kg]) was calculated and tested for normalisation of potential differences due to age, sex and BMI. RESULTS: PW significantly correlated with body weight in control donors (R (2) = 0.76, p < 0.001) while RPW (1.03 ± 0.36, mean ± SD) did not significantly differ across ages (0-58 years). Donors with type 1 diabetes (0.57 ± 0.18, p < 0.001), but not those with type 2 diabetes (0.93 ± 0.30), had significantly lower RPW. The relative weights of each pancreatic region from donors with type 1 diabetes were significantly smaller than those of regions from control donors and donors with type 2 diabetes (p < 0.001). Perhaps most interestingly, the RPW was not significantly associated with duration of type 1 diabetes or type 2 diabetes. CONCLUSIONS/INTERPRETATION: RPW allows for comparisons across a wide range of donor ages by eliminating confounding variables. These data validate an interesting feature of the type 1 diabetes pancreas and underscore the need for additional studies to identify the mechanistic basis for this finding, including those beyond the chronic loss of endogenous insulin secretion.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Pâncreas/fisiopatologia , Adolescente , Adulto , Fatores Etários , Antropometria , Autopsia , Índice de Massa Corporal , Peso Corporal , Criança , Pré-Escolar , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Adulto Jovem
20.
Proteomics ; 15(12): 2136-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25758251

RESUMO

Viral infections elicit antiviral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection, and understanding of the mechanisms of virus-associated diseases. In this work, we assayed antiviral antibodies using a novel high-density nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter-array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal-to-background ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis and type 1 diabetes. Common and unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development.


Assuntos
Anticorpos Antivirais/sangue , Artrite Juvenil/sangue , Autoanticorpos/sangue , Biomarcadores/sangue , Diabetes Mellitus Tipo 1/sangue , Análise Serial de Proteínas/métodos , Proteômica/métodos , Artrite Juvenil/imunologia , Estudos de Casos e Controles , Pré-Escolar , Diabetes Mellitus Tipo 1/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunoprecipitação , Masculino , Ácidos Nucleicos/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa