RESUMO
The rational design of efficient and low-cost electrocatalysts based on earth-abundant materials is imperative for large-scale production of hydrogen by water electrolysis. Here we present a strategy to prepare highly active catalyst materials through modifying the crystallinity of the surface/interface of strongly coupled transition metal-metal oxides. We have thermally activated the catalysts to construct amorphous/crystalline Ni-Fe oxide interfaced with a conductive Ni-Fe alloy and systematically investigated their electrocatalytic performance toward the hydrogen evolution and oxygen evolution reactions (HER and OER) in alkaline solution. It was found that the Ni-Fe/oxide material with a crystalline surface oxide phase showed remarkably superior HER activity in comparison with its amorphous or poorly crystalline counterpart. In contrast, interestingly, the amorphous/poorly crystalline oxide significantly facilitated the OER activity in comparison with the more crystalline counterpart. On one hand, the higher HER activity can be ascribed to a favorable platform for water dissociation and H-H bond formation, enabled by the unique crystalline metal/oxide structure. On the other hand, the enhanced OER catalysis on the amorphous Ni-Fe oxide surfaces can be attributed to the facile activation to form the active oxyhydroxides under OER conditions. Both are explained based on density functional theory calculations. These results thus shed light onto the role of crystallinity in the HER and OER catalysis on heterostructured Ni-Fe/oxide catalysts and provide guidance for the design of new catalysts for efficient water electrolysis.
RESUMO
Semiconducting oxide nanoparticles are strongly influenced by surface-adsorbed molecules and tend to generate an insulating depletion layer. The interface between a noble metal and a semiconducting oxide constructs a Schottky barrier, interrupting the electron transport. In the case of a Pt catalyst supported on the semiconducting oxide Nb-doped SnO2 with a fused-aggregate network structure (Pt/Nb-SnO2) for polymer electrolyte fuel cells, the electronic conductivity increased abruptly with increasing Pt loading, going from 10-4 to 10-2 S cm-1. The Pt X-ray photoemission spectroscopy (XPS) spectra at low Pt loading amount exhibited higher binding energy than that of pristine Pt metal. The peak shift for the Pt XPS spectra was larger than that of the Pt hard X-ray photoemission spectroscopy (HAXPES) spectra. For all of the spectra, the peaks approached the binding energy of pristine Pt metal with increasing Pt loading. The Sn XPS spectral peak proved the existence of Sn metal with increasing Pt loading, and the peak intensity was larger than that for HAXPES. These spectroscopic results, together with the scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDX) spectra, proved that a PtSn alloy was deposited at the interface between Pt and Nb-SnO2 as a result of the sintering procedure under dilute hydrogen atmosphere. Both Nb spectra indicated that the oxidation state of Nb was +5 and thus that the Nb cation acts as an n-type dopant of SnO2. We conclude that the PtSn alloy at the interface between Pt and Nb-SnO2 relieved the effect of the Schottky barrier, enhanced the carrier donation from Pt to Nb-SnO2, and improved the electronic transport phenomena of Pt/Nb-SnO2.