Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Pflugers Arch ; 475(8): 945-960, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37261509

RESUMO

Proper food intake is important for maintaining good health in humans. Chocolate is known to exert anti-inflammatory effects; however, the mechanisms remain unclear. In this study, we aimed to investigate the effects of cocoa butter intake on gut immunity in rats and rabbits. Cocoa butter intake increased the lymph flow, cell density, and IL-1ß, IL-6 and IL-10 levels in mesenteric lymph. Clodronate, a macrophage depletion compound, significantly enhanced the release of all cytokines. The immunoreactivities of macrophage markers CD68 and F4/80 in the jejunal villi were significantly decreased with clodronate. Piceatannol, a selective cell surface ATP synthase inhibitor significantly reduced the cocoa butter intake-mediated releases of IL-1ß, IL-6 and IL-10. The immunoreactivities of cell surface ATP synthase were observed in rat jejunal villi. Shear stress stimulation on the myofibroblast cells isolated from rat jejunum released ATP and carbon dioxide depended with H+ release. In rabbit in vivo experiments, cocoa butter intake increased the concentrations of ATP and H+ in the portal vein. The in vitro experiments with isolated cells of rat jejunal lamina propria the pH of 3.0 and 5.0 in the medium released significantly IL-1ß and IL-6. ATP selectively released IL-10. These findings suggest that cocoa butter intake regulates the gut immunity through the release and transport of IL-1ß, IL-6, and IL-10 into mesenteric lymph vessels in a negative feedback system. In addition, the H+ and ATP released from cell surface ATP synthase in jejunal villi play key roles in the cocoa butter intake-mediated regulation of gut immunity.


Assuntos
Chocolate , Gorduras na Dieta , Trato Gastrointestinal , ATPases Translocadoras de Prótons , Animais , Ratos , Coelhos , Gorduras na Dieta/administração & dosagem , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Masculino , Ratos Sprague-Dawley , Linfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-10/metabolismo , Ácido Clodrônico , Jejuno/metabolismo , Resistência ao Cisalhamento , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Células Cultivadas , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo
2.
Pflugers Arch ; 474(5): 541-551, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157133

RESUMO

The higher permeability of the venules in jejunal microcirculation to albumin contributes to the increased mesenteric lymph formation. Recently, we demonstrated that water intake induced serotonin release from enterochromaffin cells in rat jejunum, serotonin of which circulated through the portal vein into blood circulation and then increased the mesenteric lymph formation. The mode of action of serotonin remains unclear. Therefore, we aimed to clarify the mechanisms involved in the regulation of the jejunal lymph formation with permeant albumin in in vivo rat experiments. We investigated the effects of intravenous administration of serotonin or water intake on the jejunal-originated lymph volume and the concentration of albumin in the lymph in the presence or absence of L-NAME. The effects of intravenous administration of L-NAME, nicardipine, A23187, and ML-7 on the lymph formation with permeant albumin were also evaluated. Serotonin or water intake significantly increased the mesenteric lymph volume with permeant albumin in the jejunal microcirculation. The serotonin- and water intake-mediated responses were significantly reduced by the pretreatment with intravenous administration of L-NAME. Intravenous administration of L-NAME itself also decreased significantly the jejunal lymph formation. Administration of A23187 and ML-7 significantly reduced the jejunal lymph formation with permeant albumin. In contrast, administration of nicardipine significantly increased the lymph formation. In conclusion, portal venous blood flow- or serotonin-mediated NO release from venular endothelial cells plays physiologically key roles in the lymph formation in rat jejunum via the extrusion of calcium ions and inactivation of MLCK in endothelial cells.


Assuntos
Jejuno , Serotonina , Albuminas , Animais , Calcimicina/farmacologia , Células Endoteliais , NG-Nitroarginina Metil Éster/farmacologia , Nicardipino/farmacologia , Ratos , Serotonina/farmacologia
3.
Genes Cells ; 26(7): 474-484, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864419

RESUMO

Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.


Assuntos
Fator de Transcrição GATA2/metabolismo , Excisão de Linfonodo/efeitos adversos , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Complicações Pós-Operatórias/metabolismo , Animais , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Heterozigoto , Vasos Linfáticos/fisiologia , Linfedema/etiologia , Camundongos , Complicações Pós-Operatórias/etiologia , Regeneração
4.
Pflugers Arch ; 473(6): 921-936, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913004

RESUMO

The present study aims to investigate the roles of water intake in serotonin production and release in rat jejunum. We evaluated the changes in concentrations of serotonin in the portal vein and mesenteric lymph vessel induced by the intragastric administration of distilled water. The density of granules in enterochromaffin cells and the immunoreactivity of serotonin in the jejunal villi were investigated before and after water intake. The effects of intravenous administration of serotonin and/or ketanserin on mesenteric lymph flow and concentrations of albumin and IL-22 in the lymph were also addressed. Water intake increased serotonin concentration in the portal vein, but not in the mesenteric lymph vessel. The flux of serotonin through the portal vein was significantly larger than that through the mesenteric lymph vessel. Water intake decreased the density of granules in the enterochromaffin cells and increased the immunoreactivity of serotonin in the jejunal villi. The intravenous administration of serotonin increased significantly mesenteric lymph flow and the concentrations of albumin and IL-22; both were significantly reduced by the intravenous pretreatment with ketanserin. We showed that serotonin released from enterochromaffin cells by water intake was mainly transported through the portal vein. Additionally, serotonin in blood was found to increase mesenteric lymph formation with permeant albumin in the jejunal villi via the activation of 5-HT2 receptor.


Assuntos
Ingestão de Líquidos , Células Enterocromafins/metabolismo , Jejuno/metabolismo , Serotonina/metabolismo , Albuminas/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Interleucinas/sangue , Jejuno/citologia , Jejuno/fisiologia , Masculino , Veia Porta/fisiologia , Ratos , Ratos Sprague-Dawley , Serotonina/sangue , Interleucina 22
5.
Pflugers Arch ; 473(10): 1657-1666, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251510

RESUMO

We demonstrated pulmonary arteriolar blood flow-mediated CO2 gas excretion in rabbit lungs. The shear stress stimulation produced CO2 gas in cultured human endothelial cells of pulmonary arterioles via the activation of F1/Fo ATP synthase. To confirm the findings in human subjects undergoing the operation with heart-lung machines, we aimed to evaluate the effects of a stepwise switch, from a partial to a complete cardiopulmonary bypass, of the circulatory blood volume (BV, 100% = 2.4 × cardiac index), on the end-expiratory CO2 pressure (PetCO2), maximal flow velocity in the pulmonary artery (Max Vp), the inner diameter (ID) of pulmonary artery, pulmonary arterial CO2 pressure (P mix v CO2), pulmonary arterial O2 pressure (P mix v O2), hematocrit (Hct), pH, the concentration of HCO3-, and base excess (BE) in mixed venous blood in 9 patients with a mean age of 72.3 ± 3.4 years. In addition, the effects of the decrease in Hct infused with physiological saline solution (PSS) on PetCO2 were investigated in the human subjects. An approximately linear relationship between the PetCO2 and Max Vp was observed. The pumping out of 100% BV produced little or no change in the Hct, pH, P mix v CO2, and P mix v O2, respectively. The hemodilution produced by intravenous infusion of PSS caused a significant decrease in the Hct, but not in the PetCO2. In conclusion, another route of CO2 gas excretion, independent of red blood cells, may be involved in human lungs.


Assuntos
Dióxido de Carbono/metabolismo , Eritrócitos/metabolismo , Circulação Pulmonar , Idoso , Ponte Cardiopulmonar , Feminino , Humanos , Pulmão , Masculino
6.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G54-G65, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146549

RESUMO

We previously demonstrated that water intake increased mesenteric lymph flow and the total flux of IL-22 in rat jejunum. The drained water and the higher permeability of albumin in the jejunal microcirculation contributed to increase the lymph flow and IL-22 transport via the activation of great bulk flow in the jejunal villi. To address the effects of water intake-mediated great bulk flow-dependent mechanical force on jejunal physiological function and immunological regulation of innate lymphoid cells (ILC)-3, we examined the effects of shear stress stimulation on cultured rat myofibroblast cells. Next, we investigated the effects of water intake on podoplanin and IL-22 expressions in cultured human intestinal epithelial cells and rat in vivo jejunal preparations, respectively. Shear stress stimulation of the myofibroblast cells induced ATP release via an activation of cell surface F1/F0 ATP synthase. ATP produced podoplanin expression in the intestinal epithelial cells. Water intake accelerated immunohistochemical expressions of podoplanin and IL-22 in the interepithelial layers and lamina propria of the jejunum. ATP dose-dependently increased IL-22 mRNA expression in ILC-3, which are housed in the lamina propria. Water intake also increased immunohistochemical and mRNA expressions of ecto-nucleoside triphosphate diphosphohydrolases 2 and 5 in jejunal villi. In conclusion, water intake-mediated shear stress stimulation-dependent ATP release from myofibroblast cells maintains higher tissue colloid osmotic pressure in the jejunal microcirculation through podoplanin upregulation in the interepithelial layers. ATP induces IL-22 mRNA expression in ILC-3 in jejunal villi, which may contribute to regulation of mucosal immunity in small intestine.NEW & NOTEWORTHY We investigated effects of shear stress stimulation on cultured myofibroblast cells and water intake on podoplanin and IL-22 expressions in rat jejunal villi. The stimulation induced ATP release from the cells. Water intake accelerated podoplanin and IL-22 expression levels. ATP increased IL-22 mRNA expression in innate lymphoid cells (ILC)-3. Hence, water intake maintains higher osmotic pressure in the jejunal villi through ATP release and podoplanin upregulation. Water intake may regulate the mucosal immunity.


Assuntos
Trifosfato de Adenosina/metabolismo , Ingestão de Líquidos , Imunidade Inata/imunologia , Glicoproteínas de Membrana/metabolismo , Miofibroblastos/imunologia , Trifosfato de Adenosina/imunologia , Ingestão de Líquidos/imunologia , Humanos , Imunidade nas Mucosas/fisiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Miofibroblastos/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
7.
Genes Cells ; 25(9): 607-614, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562431

RESUMO

Catecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss-of-function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest-specific Wnt1-Cre transgenic mice (Gata2 NC-CKO). The vast majority of Gata2 NC-CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine-producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC-CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC-CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.


Assuntos
Células Cromafins/metabolismo , Fator de Transcrição GATA2/fisiologia , Glândulas Suprarrenais/anatomia & histologia , Medula Suprarrenal/metabolismo , Animais , Epinefrina/fisiologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Genes Letais , Camundongos , Camundongos Transgênicos , Crista Neural
8.
Arterioscler Thromb Vasc Biol ; 39(4): 741-753, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816801

RESUMO

Objective- We have previously demonstrated that coronary adventitial inflammation plays important roles in the pathogenesis of coronary vasomotion abnormalities, including drug-eluting stent (DES)-induced coronary hyperconstricting responses. Importantly, the adventitia also harbors lymphatic vessels, which may prevent inflammation by transporting extravasated fluid and inflammatory cells. We thus aimed to examine the roles of coronary adventitial lymphatic vessels in the pathogenesis of DES-induced coronary hyperconstricting responses in a porcine model in vivo. Approach and Results- We performed 2 experimental studies. In protocol 1, 15 pigs were divided into 3 groups with or without DES and with bare metal stent. Nonstented sites 20 mm apart from stent implantation also were examined. In the protocol 2, 12 pigs were divided into 2 groups with or without lymphatic vessels ligation followed by DES implantation at 2 weeks later (n=6 each). We performed coronary angiography 4 weeks after DES implantation, followed by immunohistological analysis. In protocol 1, the number and the caliber of lymphatic vessels were greater at only the DES edges after 4 more weeks. In protocol 2, coronary hyperconstricting responses were further enhanced in the lymphatic vessels ligation group associated with adventitial inflammation, Rho-kinase activation, and less adventitial lymphatic vessels formation. Importantly, there were significant correlations among these inflammation-related changes and enhanced coronary vasoconstricting responses. Conclusions- These results provide evidence that cardiac lymphatic vessel dysfunction plays important roles in the pathogenesis of coronary vasoconstrictive responses in pigs in vivo.


Assuntos
Túnica Adventícia/fisiopatologia , Vasoespasmo Coronário/fisiopatologia , Vasos Coronários/fisiopatologia , Stents Farmacológicos , Vasos Linfáticos/fisiopatologia , Vasoconstrição/fisiologia , Adipócitos/patologia , Animais , Angiografia Coronária , Vasos Coronários/patologia , Ligadura , Linfangiogênese , Masculino , Distribuição Aleatória , Stents , Suínos
9.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G155-G165, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431330

RESUMO

The traditional Japanese health care custom recommends that a suitable volume of water is consumed. However, physiological and immunological mechanisms in support of this practice are unknown. Therefore, we conducted rat and rabbit in vivo experiments to investigate the effects of intragastric administration of distilled water on the jejunal-originated lymph flow and the concentrations and total flux of cells, albumin, long-chain fatty acids, and innate lymphoid cell 3 (ILC-3)-secreted interleukin-22 (IL-22) through mesenteric lymph vessels. The distribution and activity of ILC-3 in rat small intestine by water intake were evaluated using flow cytometry and RT-PCR. The intragastric administration of distilled water caused significant increases in rat mesenteric lymph flow and in the total flux of cells, albumin, long-chain fatty acids, and IL-22 through the lymph vessels. Intravenously injected Evans blue dye was rapidly transported into rabbit mesenteric lymph vessel and cisterna chyli. The distribution of ILC-3 and the expression of IL-22 mRNA were maximal in the lamina propria cells of the rat jejunum. No significant presence of ILC-3 in the lymph was observed in the control and under water intake conditions. In conclusion, the absorbed water in the jejunum is transported through mesenteric lymph vessels. The higher permeability of albumin in the jejunal microcirculation may play key roles in the transport of consumed water and the reservoir and transporter of long-chain fatty acids. Water intake also accelerates the transfer of IL-22 to the mesenteric lymph, which may contribute, in part, to maintaining and promoting the innate immunity in the body. NEW & NOTEWORTHY The higher permeability of albumin-mediated transport of water-soluble substances in mesenteric lymph vessels of the jejunum may have a large impact on the classic concept suggesting that water-soluble small molecules travel to the liver via the portal vein. ILC-3 is mainly housed in the lamina propria of the jejunum, especially its upper part. IL-22 released from the ILC-3 is also transported through mesenteric lymph in collaboration with the albumin-mediated movement of consumed water.


Assuntos
Albuminas/metabolismo , Ingestão de Líquidos/fisiologia , Ácidos Graxos/metabolismo , Interleucinas/metabolismo , Jejuno/metabolismo , Animais , Imunidade Inata/imunologia , Absorção Intestinal , Fígado/metabolismo , Linfa/metabolismo , Vasos Linfáticos/metabolismo , Linfócitos/metabolismo , Masculino , Coelhos , Interleucina 22
10.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677658

RESUMO

Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 µm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Íons Pesados , Microglia/metabolismo , Microglia/efeitos da radiação , Radiação Ionizante , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apoptose/efeitos da radiação , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Embrião não Mamífero , Peixes , Expressão Gênica , Íons Pesados/efeitos adversos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Oryzias
11.
Development ; 139(16): 2978-87, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22764046

RESUMO

During central nervous system development, neural progenitors are patterned to form discrete neurogenic and non-neurogenic zones. In the zebrafish hindbrain, neurogenesis is organised by Fgf20a emanating from neurons located at each segment centre that inhibits neuronal differentiation in adjacent progenitors. Here, we have identified a molecular mechanism that clusters fgf20a-expressing neurons in segment centres and uncovered a requirement for this positioning in the regulation of neurogenesis. Disruption of hindbrain boundary cell formation alters the organisation of fgf20a-expressing neurons, consistent with a role of chemorepulsion from boundaries. The semaphorins Sema3fb and Sema3gb, which are expressed by boundary cells, and their receptor Nrp2a are required for clustering of fgf20a-expressing neurons at segment centres. The dispersal of fgf20a-expressing neurons that occurs following the disruption of boundaries or of Sema3fb/Sema3gb signalling leads to reduced FGF target gene expression in progenitors and an increased number of differentiating neurons. Sema3 signalling from boundaries thus links hindbrain segmentation to the positioning of fgf20a-expressing neurons that regulates neurogenesis.


Assuntos
Neurogênese/fisiologia , Rombencéfalo/embriologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Primers do DNA/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Modelos Neurológicos , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Neuropilina-2/antagonistas & inibidores , Neuropilina-2/genética , Neuropilina-2/metabolismo , Rombencéfalo/metabolismo , Semaforinas/antagonistas & inibidores , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
BMC Dev Biol ; 14: 12, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24564206

RESUMO

BACKGROUND: The development of blood flow in the heart is crucial for heart function and embryonic survival. Recent studies have revealed the importance of the extracellular matrix and the mechanical stress applied to the valve cushion that controls blood flow to the formation of the cardiac valve during embryogenesis. However, the events that trigger such valve formation and mechanical stress, and their temperature dependence have not been explained completely. Medaka (Oryzias latipes) inhabits a wide range of East Asia and adapts to a wide range of climates. We used medaka embryos from different genomic backgrounds and analyzed heartbeat characteristics including back-and-forth blood flow and bradyarrhythmia in embryos incubated at low temperature. We also used high-speed imaging analysis to examine the heartbeat of these animals after transient exposure to low temperature. RESULTS: Embryos of the Hd-rR medaka strain exhibited back-and-forth blood flow in the heart (blood regurgitation) after incubation at 15 °C. This regurgitation was induced by exposure to low temperature around the heartbeat initiation period and was related to abnormalities in the maintenance or pattern of contraction of the atrium or the atrioventricular canal. The Odate strain from the northern Japanese group exhibited normal blood flow after incubation at 15 °C. High-speed time-lapse analysis of the heartbeat revealed that bradyarrhythmia occurred only in Hd-rR embryos incubated at 15 °C. The coefficient of contraction, defined as the quotient of the length of the atrium at systole divided by its length at diastole, was not affected in either strain. The average heart rate after removing the effect of arrhythmia did not differ significantly between the two strains, suggesting that the mechanical stress of individual myocardial contractions and the total mechanical stress could be equivalent, regardless of the presence of arrhythmia or the heart rate. Test-cross experiments suggested that this circulation phenotype was caused by a single major genomic locus. CONCLUSIONS: These results suggest that cardiogenesis at low temperature requires a constant heartbeat. Abnormal contraction rhythms at the stage of heartbeat initiation may cause regurgitation at later stages. From the evolutionary viewpoint, strains that exhibit normal cardiogenesis during development at low temperature inhabit northern environments.


Assuntos
Temperatura Baixa , Frequência Cardíaca/fisiologia , Coração/embriologia , Coração/fisiopatologia , Animais , Insuficiência da Valva Aórtica/fisiopatologia , Circulação Coronária , Feminino , Masculino , Contração Miocárdica , Organogênese , Oryzias/classificação , Oryzias/embriologia , Oryzias/fisiologia , Fluxo Sanguíneo Regional , Especificidade da Espécie , Fatores de Tempo
13.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38168819

RESUMO

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Assuntos
Colágeno , Fator de Transcrição GATA2 , Heterozigoto , Linfedema , Animais , Camundongos , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Colágeno/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Camundongos Knockout , Haploinsuficiência , Deficiência de GATA2/metabolismo , Deficiência de GATA2/genética , Camundongos Endogâmicos C57BL
14.
Lymphat Res Biol ; 21(3): 253-261, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36577034

RESUMO

It is known that nitric oxide (NO) is a gas and synthesized from l-arginine by the NO synthase (NOS) in vascular endothelial cells. The diffused NO activates the guanosine monophosphate, which initiates a series of intracellular events, leading to physiological response such as vasodilation. There are three different types of NOS, namely endothelial constitutive NOS (ecNOS), neuronal NOS (nNOS), and cytokine-inducible NOS (iNOS). The ecNOS and nNOS are expressed constitutively at low levels and can be activated rapidly by an increase in cytoplasmic calcium ions. In contrast, the iNOS is induced when macrophages are activated by cytokine, resulting in the induction of pathophysiological effects. Lymph flow is known to stimulate the release of NO from lymphatic endothelial cells (LEC) and then produce the relaxation of lymphatic smooth muscle cells. The NO also plays a key role in the control of lymphatic pump activity in vivo. Many studies have shown the NO-mediated findings in various kinds of lymph vessels. However, there is no or little study to demonstrate the effects of lymph flow on the molecular expression of ecNOS mRNA and the protein. In addition, little study is available for clarifying the relationship between NO and sympathetic nerve fibers in the regulation of lymph transport and production. Therefore, in this review, the experimental findings of lymph flow-mediated increases in the ecNOS mRNA and the protein in LEC are demonstrated in detail. In addition, the roles of NO and aminergic nerve fibers in the physiological control system of lymph transport and production are discussed.


Assuntos
Células Endoteliais , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Citocinas , Sistema Linfático , RNA Mensageiro/metabolismo
15.
Sci Rep ; 13(1): 416, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624139

RESUMO

We constructed an informing system to users for the heatstroke risk using a wearable perspiration ratemeter and the users' thirst responses. The sweating ratemeter was constructed with a capacitive humidity sensor in the ventilated capsule. The timing point for informing heatstroke risk was decided to change from positive to negative on the second derivative of sweating curve. In addition, a wearable self-identification and -information system of thirst response was constructed with a smartphone. To evaluate the validity of wearable apparatus, we aimed to conduct human experiments of 16 healthy subjects with the step up and down physical exercises. The blood and urine samples of the subjects were collected before and after the 30-min physical exercise. The concentrations of TP, Alb, and RBC increased slightly with the exercise. In contrast, the concentrations of vasopressin in all subjects remarkably increased with the exercise. In almost subjects, they identified their thirst response until several min after the informing for heatstroke risk. In conclusion, the wearable ratemeter and self-information system of thirst response were suitable for informing system of heatstroke risk. The validity of timing point for informing heatstroke risk was confirmed with changes in the thirst response and concentrations of vasopressin in blood.


Assuntos
Golpe de Calor , Dispositivos Eletrônicos Vestíveis , Humanos , Sudorese , Exercício Físico/fisiologia , Vasopressinas
16.
Int J Radiat Biol ; 99(4): 663-672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35939385

RESUMO

PURPOSE: Hematopoietic tissues of vertebrates are highly radiation sensitive and the effects of ionizing radiation on the hematopoiesis have been studied in mammals and teleosts for decades. In this study, radiation responses in the kidney, the main hematopoietic organ in teleosts, were investigated in Japanese medaka (Oryzias latipes), which has been a model animal and a large body of knowledge has been accumulated in radiation biology. METHODS: Kidney, the main hematopoietic tissue of adult medaka fish, was locally irradiated using proton and carbon ion beams irradiation system of Takasaki Ion Accelerator for Advanced Radiation Application (TIARA), QST, and the effects on peripheral blood cells and histology of the kidney were investigated. RESULTS: When only kidneys were locally irradiated with proton or carbon ion beam (15 Gy), the hematopoietic cells in the irradiated kidney and cell density in the peripheral blood decreased 7 days after the irradiation in the same manner as after the whole-body irradiation with γ-rays (15 Gy). These results demonstrate that direct irradiation of the hematopoietic cells in the kidney induced cell death and/or cell cycle arrest and stopped the supply of erythroid cells. Then, the cell density in the peripheral blood recovered to the control level within 4 days and 7 days after the γ-ray and proton beam irradiation (15 Gy), respectively, while the cell density in the peripheral blood did not recover after the carbon ion beam irradiation (15 Gy). The hematopoietic cells in the irradiated kidneys temporarily decreased and recovered to the control level within 21 days after the γ-ray or proton beam irradiation (15 Gy), while it did not recover after the carbon ion beam irradiation (15 Gy). In contrast, the recovery of the cell density in the peripheral blood delayed when anemic medaka were irradiated 1 day after the administration of phenylhydrazine. With and without γ-ray irradiation, a large number of hematopoietic cells was still proliferating in the kidney 7 days after the anemia induction. CONCLUSIONS: The results obtained strongly suggest that the hematopoietic stem cells in medaka kidney prioritize to proliferate and increase peripheral blood cells to eliminate anemia, even when they are damaged by high-dose irradiation.


Assuntos
Anemia , Oryzias , Animais , Oryzias/metabolismo , Prótons , Raios gama/efeitos adversos , Células-Tronco Hematopoéticas , Mamíferos
17.
Lymphat Res Biol ; 20(3): 282-289, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34724800

RESUMO

Currently, there are many methods to evaluate the effectiveness of manual lymph drainage in the treatment of lymphedema, that is, limb volume measurement, bio-electrical impedance measurement, computer tomography, and ultrasound imaging. However, it is difficult for these methods to accurately address the lymph flow generated by manual lymph drainage. Therefore, we aimed at developing a concise and accurate method to measure the lymph flow through the thoracic duct in human subjects, which is applicable for evaluating the effectiveness of manual lymph drainage. In the present mini-review, we demonstrate the developed method in detail and its scientific evidence for the effectiveness obtained with animal and human clinical experiments. In rat in vivo experiments, intragastric administration of distilled water significantly increased mesenteric flow, which was transported via the cisterna chyli and then the thoracic duct. The manual massage on the cisterna chyli in the anesthetized rabbit significantly accelerated the lymph flow through the thoracic duct, resulting in marked hemodilution. Abdominal respiration in the supine position in human subjects produced similar hemodilution, with a marked decrease in the concentration of vasopressin in the blood. On this basis, we developed a new method to accurately measure the lymph flow through the thoracic duct by using changes in the concentration of vasopressin in the blood. In addition, with changes in urine osmolarity depending on the concentration of vasopressin in the blood, we developed a more concise and noninvasive method for evaluating the lymph flow through the thoracic duct in human subjects. These methods may be applicable for evaluating the effectiveness for the manual lymph drainage in the patients with lymphedema.


Assuntos
Linfedema , Ducto Torácico , Animais , Humanos , Linfa , Drenagem Linfática Manual , Concentração Osmolar , Coelhos , Ratos , Sujeitos da Pesquisa , Ducto Torácico/diagnóstico por imagem , Vasopressinas
18.
PLoS One ; 17(12): e0273064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584168

RESUMO

Small teleosts have recently been established as models of human diseases. However, measuring heart rate by electrocardiography is highly invasive for small fish and not widely used. The physiological nature and function of vertebrate autonomic nervous system (ANS) modulation of the heart has traditionally been investigated in larvae, transparent but with an immature ANS, or in anesthetized adults, whose ANS activity may possibly be disturbed under anesthesia. Here, we defined the frequency characteristics of heart rate variability (HRV) modulated by the ANS from observations of heart movement in high-speed movie images and changes in ANS regulation under environmental stimulation in unanesthetized adult medaka (Oryzias latipes). The HRV was significantly reduced by atropine (1 mM) in the 0.25-0.65 Hz and by propranolol (100 µM) at 0.65-1.25 Hz range, suggesting that HRV in adult medaka is modulated by both the parasympathetic and sympathetic nervous systems within these frequency ranges. Such modulations of HRV by the ANS in adult medaka were remarkably suppressed under anesthesia and continuous exposure to light suppressed HRV only in the 0.25-0.65 Hz range, indicating parasympathetic withdrawal. Furthermore, pre-hatching embryos did not show HRV and the power of HRV developed as fish grew. These results strongly suggest that ANS modulation of the heart in adult medaka is frequency-dependent phenomenon, and that the impact of long-term environmental stimuli on ANS activities, in addition to development of ANS activities, can be precisely evaluated in medaka using the presented method.


Assuntos
Oryzias , Adulto , Animais , Humanos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo , Eletrocardiografia , Sistema Nervoso Simpático
19.
J Physiol Sci ; 71(1): 31, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641788

RESUMO

In this review, with our current studies we demonstrated medical evidence that water and food intake are useful for IL-22-related mucosal immunity-dependent maintenance of health care. The traditional Japanese health care practices recommend daily consumption of suitable volume of water. However, immunological mechanisms that support of the traditional practices are still unsolved. We focused on type 3 innate lymphoid cells (ILC3s), because the ILC3s are mainly housed in the lamina propria of the jejunum. IL-22 released from the ILC3 is transported through mesenteric lymph in collaboration with the albumin-mediated movement of consumed water. Thus, water intake-mediated upregulation of IL-22-dependent mucosal immunity contributes to the traditional Japanese health care practices. We also reviewed current studies that food intake-mediated increase in VIP-dependent neuronal activity in the small intestine and the food intake included with tryptophan-derived metabolites may accelerate the IL-22 in ILC3s-dependent mucosal immunity and then contribute in keeping health care.


Assuntos
Imunidade Inata , Imunidade nas Mucosas , Atenção à Saúde , Digestão , Ingestão de Alimentos , Humanos , Interleucinas , Jejuno , Linfócitos , Água , Interleucina 22
20.
J Radiat Res ; 62(1): 12-24, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231252

RESUMO

Transgenic expression in medaka of the Xiphophorus oncogene xmrk, under a pigment cell specific mitf promoter, induces hyperpigmentation and pigment cell tumors. In this study, we crossed the Hd-rR and HNI inbred strains because complete genome information is readily available for molecular and genetic analysis. We prepared an Hd-rR (p53+/-, p53-/-) and Hd-rR HNI hybrid (p53+/-) fish-based xmrk model system to study the progression of pigment cells from hyperpigmentation to malignant tumors on different genetic backgrounds. In all strains examined, most of the initial hyperpigmentation occurred in the posterior region. On the Hd-rR background, mitf:xmrk-induced tumorigenesis was less frequent in p53+/- fish than in p53-/- fish. The incidence of hyperpigmentation was more frequent in Hd-rR/HNI hybrids than in Hd-rR homozygotes; however, the frequency of malignant tumors was low, which suggested the presence of a tumor suppressor in HNI genetic background fish. The effects on tumorigenesis in xmrk-transgenic immature medaka of a single 1.3 Gy irradiation was assessed by quantifying tumor progression over 4 consecutive months. The results demonstrate that irradiation has a different level of suppressive effect on the frequency of hyperpigmentation in purebred Hd-rR compared with hybrids.


Assuntos
Carcinogênese/genética , Carcinogênese/efeitos da radiação , Ciprinodontiformes/genética , Radiação Ionizante , Transgenes , Animais , Animais Geneticamente Modificados , Carcinogênese/patologia , Relação Dose-Resposta à Radiação , Proteínas de Peixes/genética , Raios gama , Hibridização Genética , Hiperpigmentação/genética , Receptores Proteína Tirosina Quinases/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa