Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2652-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286849

RESUMO

A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.


Assuntos
Indexação e Redação de Resumos/métodos , Algoritmos , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Análise de Fourier , Proteínas/química , Difração de Raios X
2.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1617-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897484

RESUMO

The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.


Assuntos
Análise por Conglomerados , Cristalografia por Raios X/métodos , Software , Insulina/química , Proteínas de Membrana/química , Modelos Moleculares , Muramidase , Proteínas de Plantas/química , Síncrotrons , Temperatura
3.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1090-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695253

RESUMO

Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo(5)U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo(5)U and was annotated as an S-adenosyl-L-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-L-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry 1im8, suggests that the active site contains SCM-SAH and not SAM.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Transferases de Grupo de Um Carbono/química , RNA de Transferência/metabolismo , S-Adenosil-Homocisteína/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , Espectrometria de Massas em Tandem
4.
Acta Crystallogr A Found Adv ; 79(Pt 2): 180-191, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862043

RESUMO

Because of the strong electron-atom interaction, the kinematic theory of diffraction cannot be used to describe the scattering of electrons by an assembly of atoms due to the strong dynamical diffraction that needs to be taken into account. In this paper, the scattering of high-energy electrons by a regular array of light atoms is solved exactly by applying the T-matrix formalism to the corresponding Schrödinger's equation in spherical coordinates. The independent atom model is used, where each atom is represented by a sphere with an effective constant potential. The validity of the forward scattering approximation and the phase grating approximation, assumed by the popular multislice method, is discussed, and an alternative interpretation of multiple scattering is proposed and compared with existing interpretations.

5.
Protein Sci ; 31(1): 232-250, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747533

RESUMO

The DIALS software for the processing of X-ray diffraction data is presented, with an emphasis on how the suite may be used as a toolkit for data processing. The description starts with an overview of the history and intent of the toolkit, usage as an automated system, command-line use, and ultimately how new tools can be written using the API to perform bespoke analysis. Consideration is also made to the application of DIALS to techniques outside of macromolecular X-ray crystallography.


Assuntos
Processamento Eletrônico de Dados , Software , Cristalografia por Raios X
6.
J Mol Biol ; 434(11): 167599, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460671

RESUMO

PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org). Extensions of PDBx/mmCIF are similarly used for computed structure models by ModelArchive (modelarchive.org), integrative/hybrid structures by PDB-Dev (pdb-dev.wwpdb.org), small angle scattering data by Small Angle Scattering Biological Data Bank SASBDB (sasbdb.org), and for models computed generated with the AlphaFold 2.0 deep learning software suite (alphafold.ebi.ac.uk). Community-driven development of PDBx/mmCIF spans three decades, involving contributions from researchers, software and methods developers in structural sciences, data repository providers, scientific publishers, and professional societies. Having a semantically rich and extensible data framework for representing a wide range of structural biology experimental and computational results, combined with expertly curated 3D biostructure data sets in public repositories, accelerates the pace of scientific discovery. Herein, we describe the architecture of the PDBx/mmCIF data standard, tools used to maintain representations of the data standard, governance, and processes by which data content standards are extended, plus community tools/software libraries available for processing and checking the integrity of PDBx/mmCIF data. Use cases exemplify how the members of the Worldwide Protein Data Bank have used PDBx/mmCIF as the foundation for its pipeline for delivering Findable, Accessible, Interoperable, and Reusable (FAIR) data to many millions of users worldwide.


Assuntos
Biologia Computacional , Cristalografia , Bases de Dados de Proteínas , Software , Substâncias Macromoleculares/química , Biologia Molecular , Conformação Proteica , Semântica
7.
Protein Sci ; 30(1): 136-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33030237

RESUMO

Leginon is a system for automated data acquisition from a transmission electron microscope. Here we provide an updated summary of the overall Leginon architecture and an update of the current state of the package. We also highlight a few recent developments to provide some concrete examples and use cases.


Assuntos
Microscopia Eletrônica de Transmissão , Software
8.
Front Mol Biosci ; 8: 648603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327213

RESUMO

The emerging field of microcrystal electron diffraction (MicroED) is of great interest to industrial researchers working in the drug discovery and drug development space. The promise of being able to routinely solve high-resolution crystal structures without the need to grow large crystals is very appealing. Despite MicroED's exciting potential, adoption across the pharmaceutical industry has been slow, primarily owing to a lack of access to specialized equipment and expertise. Here we present our experience building a small molecule MicroED service pipeline for members of the pharmaceutical industry. In the past year, we have examined more than fifty small molecule samples submitted by our clients, the majority of which have yielded data suitable for structure solution. We also detail our experience determining small molecule MicroED structures of pharmaceutical interest and offer some insights into the typical experimental outcomes. This experience has led us to conclude that small molecule MicroED adoption will continue to grow within the pharmaceutical industry where it is able to rapidly provide structures inaccessible by other methods.

9.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 5): 522-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20445227

RESUMO

The core of the exosome, a versatile multisubunit RNA-processing enzyme found in archaea and eukaryotes, includes a ring of six RNase PH subunits. This basic architecture is homologous to those of the bacterial and archaeal RNase PHs and the bacterial polynucleotide phosphorylase (PNPase). While all six RNase PH monomers are catalytically active in the homohexameric RNase PH, only half of them are functional in the bacterial PNPase and in the archaeal exosome core and none are functional in the yeast and human exosome cores. Here, the crystal structure of the RNase PH ring from the exosome of the anaerobic methanogenic archaeon Methanothermobacter thermautotrophicus is described at 2.65 A resolution. Free phosphate anions were found for the first time in the active sites of the RNase PH subunits of an exosome structure and provide structural snapshots of a critical intermediate in the phosphorolytic degradation of RNA by the exosome. Furthermore, the present structure highlights the plasticity of the surfaces delineating the polar regions of the RNase PH ring of the exosome, a feature that can facilitate both interaction with the many cofactors involved in exosome function and the processive activity of this enzyme.


Assuntos
Methanobacteriaceae/enzimologia , Ribonucleases/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Fosfatos/metabolismo , Ligação Proteica , Ribonucleases/metabolismo
10.
IUCrJ ; 7(Pt 2): 342-354, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148861

RESUMO

This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant.

11.
Front Mol Biosci ; 7: 179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850967

RESUMO

MicroED has recently emerged as a powerful method for the analysis of biological structures at atomic resolution. This technique has been largely limited to protein nanocrystals which grow either as needles or plates measuring only a few hundred nanometers in thickness. Furthermore, traditional microED data processing uses established X-ray crystallography software that is not optimized for handling compound effects that are unique to electron diffraction data. Here, we present an integrated workflow for microED, from sample preparation by cryo-focused ion beam milling, through data collection with a standard Ceta-D detector, to data processing using the DIALS software suite, thus enabling routine atomic structure determination of protein crystals of any size and shape using microED. We demonstrate the effectiveness of the workflow by determining the structure of proteinase K to 2.0 Å resolution and show the advantage of using protein crystal lamellae over nanocrystals.

12.
BMC Struct Biol ; 9: 32, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19454024

RESUMO

BACKGROUND: Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown. RESULTS: We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner. CONCLUSION: It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.


Assuntos
Proteínas Arqueais/química , Methanobacteriaceae/metabolismo , RNA/química , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas/química , RNA/metabolismo , Alinhamento de Sequência
13.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 11): 1083-6, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18997348

RESUMO

MTH909 is the Methanothermobacter thermautotrophicus orthologue of Saccharomyces cerevisiae TAN1, which is required for N(4)-acetylcytidine formation in tRNA. The protein consists of an N-terminal near-ferredoxin-like domain and a C-terminal THUMP domain. Unlike most other proteins containing the THUMP domain, TAN1 lacks any catalytic domains and has been proposed to form a complex with a catalytic protein that is capable of making base modifications. MTH909 has been cloned, overexpressed and purified. The molecule exists as a monomer in solution. X-ray data were collected to 2.85 A resolution from a native crystal belonging to space group P6(1)22 (or P6(5)22), with unit-cell parameters a = 69.9, c = 408.5 A.


Assuntos
Proteínas de Bactérias/química , Methanobacteriaceae/química , Proteínas de Ligação a RNA/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Cristalização , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Difração de Raios X
14.
Acta Crystallogr D Struct Biol ; 74(Pt 6): 506-518, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29872002

RESUMO

Electron diffraction is a relatively novel alternative to X-ray crystallography for the structure determination of macromolecules from three-dimensional nanometre-sized crystals. The continuous-rotation method of data collection has been adapted for the electron microscope. However, there are important differences in geometry that must be considered for successful data integration. The wavelength of electrons in a TEM is typically around 40 times shorter than that of X-rays, implying a nearly flat Ewald sphere, and consequently low diffraction angles and a high effective sample-to-detector distance. Nevertheless, the DIALS software package can, with specific adaptations, successfully process continuous-rotation electron diffraction data. Pathologies encountered specifically in electron diffraction make data integration more challenging. Errors can arise from instrumentation, such as beam drift or distorted diffraction patterns from lens imperfections. The diffraction geometry brings additional challenges such as strong correlation between lattice parameters and detector distance. These issues are compounded if calibration is incomplete, leading to uncertainty in experimental geometry, such as the effective detector distance and the rotation rate or direction. Dynamic scattering, absorption, radiation damage and incomplete wedges of data are additional factors that complicate data processing. Here, recent features of DIALS as adapted to electron diffraction processing are shown, including diagnostics for problematic diffraction geometry refinement, refinement of a smoothly varying beam model and corrections for distorted diffraction images. These novel features, combined with the existing tools in DIALS, make data integration and refinement feasible for electron crystallography, even in difficult cases.


Assuntos
Processamento Eletrônico de Dados/métodos , Microscopia Eletrônica de Transmissão/métodos , Software , Cristalografia/métodos , Confiabilidade dos Dados , Muramidase/química , Proteínas/química
15.
Acta Crystallogr D Struct Biol ; 74(Pt 9): 877-894, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198898

RESUMO

The DIALS diffraction-modeling software package has been applied to serial crystallography data. Diffraction modeling is an exercise in determining the experimental parameters, such as incident beam wavelength, crystal unit cell and orientation, and detector geometry, that are most consistent with the observed positions of Bragg spots. These parameters can be refined by nonlinear least-squares fitting. In previous work, it has been challenging to refine both the positions of the sensors (metrology) on multipanel imaging detectors such as the CSPAD and the orientations of all of the crystals studied. Since the optimal models for metrology and crystal orientation are interdependent, alternate cycles of panel refinement and crystal refinement have been required. To simplify the process, a sparse linear algebra technique for solving the normal equations was implemented, allowing the detector panels to be refined simultaneously against the diffraction from thousands of crystals with excellent computational performance. Separately, it is shown how to refine the metrology of a second CSPAD detector, positioned at a distance of 2.5 m from the crystal, used for recording low-angle reflections. With the ability to jointly refine the detector position against the ensemble of all crystals used for structure determination, it is shown that ensemble refinement greatly reduces the apparent nonisomorphism that is often observed in the unit-cell distributions from still-shot serial crystallography. In addition, it is shown that batching the images by timestamp and re-refining the detector position can realistically model small, time-dependent variations in detector position relative to the sample, and thereby improve the integrated structure-factor intensity signal and heavy-atom anomalous peak heights.


Assuntos
Bacillus/enzimologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Termolisina/química , Difração de Raios X , Algoritmos , Bacillus/classificação , Cristalografia por Raios X , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação
16.
Acta Crystallogr D Struct Biol ; 74(Pt 2): 85-97, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533234

RESUMO

The DIALS project is a collaboration between Diamond Light Source, Lawrence Berkeley National Laboratory and CCP4 to develop a new software suite for the analysis of crystallographic X-ray diffraction data, initially encompassing spot finding, indexing, refinement and integration. The design, core algorithms and structure of the software are introduced, alongside results from the analysis of data from biological and chemical crystallography experiments.


Assuntos
Algoritmos , Cristalografia por Raios X/métodos , Processamento Eletrônico de Dados/métodos , Software , Proteínas de Bactérias/química , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Proteínas Repressoras/química , Termolisina/química
17.
J Mol Biol ; 356(1): 97-110, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16343540

RESUMO

ThiI is an enzyme responsible for the formation of the modified base S(4)U (4-thiouridine) found at position 8 in some prokaryotic tRNAs. This base acts as a sensitive trigger for the response mechanism to UV exposure, providing protection against its damaging effects. We present the crystal structure of Bacillus anthracis ThiI in complex with AMP, revealing an extended tripartite architecture in which an N-terminal ferredoxin-like domain (NFLD) connects the C-terminal catalytic PP-loop pyrophosphatase domain with a THUMP domain, an ancient predicted RNA-binding domain that is widespread in all kingdoms of life. We describe the structure of the THUMP domain, which appears to be unrelated to RNA-binding domains of known structure. Mapping the conserved residues of NFLD and the THUMP domain onto the ThiI structure suggests that these domains jointly form the tRNA-binding surface. The inaccessibility of U8 in the canonical L-shaped form of tRNA, and the existence of a glycine-rich linker joining the catalytic and RNA-binding moieties of ThiI suggest that structural changes may occur in both molecules upon binding.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Sulfurtransferases/química , Sulfurtransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Ferredoxinas/química , Ferredoxinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Quaternária de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , RNA de Transferência/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Sulfurtransferases/genética
18.
IUCrJ ; 4(Pt 5): 626-638, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989718

RESUMO

An algorithm for modelling the background for each Bragg reflection in a series of X-ray diffraction images containing Debye-Scherrer diffraction from ice in the sample is presented. The method involves the use of a global background model which is generated from the complete X-ray diffraction data set. Fitting of this model to the background pixels is then performed for each reflection independently. The algorithm uses a static background model that does not vary over the course of the scan. The greatest improvement can be expected for data where ice rings are present throughout the data set and the local background shape at the size of a spot on the detector does not exhibit large time-dependent variation. However, the algorithm has been applied to data sets whose background showed large pixel variations (variance/mean > 2) and has been shown to improve the results of processing for these data sets. It is shown that the use of a simple flat-background model as in traditional integration programs causes systematic bias in the background determination at ice-ring resolutions, resulting in an overestimation of reflection intensities at the peaks of the ice rings and an underestimation of reflection intensities either side of the ice ring. The new global background-model algorithm presented here corrects for this bias, resulting in a noticeable improvement in R factors following refinement.

19.
Acta Crystallogr D Struct Biol ; 72(Pt 12): 1241-1253, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27917825

RESUMO

SRGAP2 (Slit-Robo GTPase-activating protein 2) is a cytoplasmic protein found to be involved in neuronal branching, restriction of neuronal migration and restriction of the length and density of dendritic postsynaptic spines. The extended F-BAR (F-BARx) domain of SRGAP2 generates membrane protrusions when expressed in COS-7 cells, while most F-BARs induce the opposite effect: membrane invaginations. As a first step to understand this discrepancy, the F-BARx domain of SRGAP2 was isolated and crystallized after co-expression with the carboxy domains of the protein. Diffraction data were collected from two significantly non-isomorphous crystals in the same monoclinic C2 space group. A correct molecular-replacment solution was obtained by applying a molecular symmetry-constrained systematic search approach that took advantage of the conserved biological symmetry of the F-BAR domains. It is shown that similar approaches can solve other F-BAR structures that were previously determined by experimental phasing. Diffraction data were reprocessed with a high-resolution cutoff of 2.2 Å, chosen using less strict statistical criteria. This has improved the outcome of multi-crystal averaging and other density-modification procedures.


Assuntos
Proteínas Ativadoras de GTPase/química , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos
20.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 558-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050135

RESUMO

Rapid data collection and modern computing resources provide the opportunity to revisit the task of optimizing the model of diffraction geometry prior to integration. A comprehensive description is given of new software that builds upon established methods by performing a single global refinement procedure, utilizing a smoothly varying model of the crystal lattice where appropriate. This global refinement technique extends to multiple data sets, providing useful constraints to handle the problem of correlated parameters, particularly for small wedges of data. Examples of advanced uses of the software are given and the design is explained in detail, with particular emphasis on the flexibility and extensibility it entails.


Assuntos
Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa