Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(8): 083503, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173265

RESUMO

The DIII-D tokamak magnetic diagnostic system [E. J. Strait, Rev. Sci. Instrum. 77, 023502 (2006)] has been upgraded to significantly expand the measurement of the plasma response to intrinsic and applied non-axisymmetric "3D" fields. The placement and design of 101 additional sensors allow resolution of toroidal mode numbers 1 ≤ n ≤ 3, and poloidal wavelengths smaller than MARS-F, IPEC, and VMEC magnetohydrodynamic model predictions. Small 3D perturbations, relative to the equilibrium field (10(-5) < δB/B0 < 10(-4)), require sub-millimeter fabrication and installation tolerances. This high precision is achieved using electrical discharge machined components, and alignment techniques employing rotary laser levels and a coordinate measurement machine. A 16-bit data acquisition system is used in conjunction with analog signal-processing to recover non-axisymmetric perturbations. Co-located radial and poloidal field measurements allow up to 14.2 cm spatial resolution of poloidal structures (plasma poloidal circumference is ~500 cm). The function of the new system is verified by comparing the rotating tearing mode structure, measured by 14 BP fluctuation sensors, with that measured by the upgraded B(R) saddle loop sensors after the mode locks to the vessel wall. The result is a nearly identical 2/1 helical eigenstructure in both cases.

2.
Rev Sci Instrum ; 83(10): 10D723, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126897

RESUMO

A new pair of in situ reciprocating Mach probes termed swing probes has been deployed on the DIII-D centerpost for the 2012 experimental campaign. When not deployed, the entire assembly is housed in a <5 cm space underneath the centerpost tiles. This design is unique in that the probe swings vertically through the edge plasma, taking measurements along a 180° arc with a 20 cm radius. The motion is powered by actuator coils that interact with the tokamak's magnetic field. Two electrodes maintain a Mach-pair orientation throughout the swing and provide measurements of saturation current, electron temperature, and parallel flow speeds up to the separatrix.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa