Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Chem Biol ; 15(11): 1057-1066, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591564

RESUMO

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.


Assuntos
Apoptose/fisiologia , Bibliotecas de Moléculas Pequenas/metabolismo , Canal de Ânion 2 Dependente de Voltagem/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Animais , Camundongos , Ligação Proteica , Canal de Ânion 2 Dependente de Voltagem/metabolismo
2.
Bioorg Med Chem Lett ; 35: 127813, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486050

RESUMO

Current techniques for the identification of DNA adduct-inducing and DNA interstrand crosslinking agents include electrophoretic crosslinking assays, electrophoretic gel shift assays, DNA and RNA stop assays, mass spectrometry-based methods and 32P-post-labelling. While these assays provide considerable insight into the site and stability of the interaction, they are relatively expensive, time-consuming and sometimes rely on the use of radioactively-labelled components, and thus are ill-suited to screening large numbers of compounds. A novel medium throughput assay was developed to overcome these limitations and was based on the attachment of a biotin-tagged double stranded (ds) oligonucleotide to Corning DNA-Bind plates. We aimed to detect anthracycline and anthracenedione DNA adducts which form by initial non-covalent intercalation with duplex DNA, and subsequent covalent adduct formation which is mediated by formaldehyde. Following drug treatment, DNA samples were subjected to a denaturation step, washing and then measurement by fluorescence to detect remaining drug-DNA species using streptavidin-europium. This dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) is a time-resolved fluorescence intensity assay where the fluorescence signal arises only from stabilised drug-DNA complexes. We applied this new methodology to the identification of anthracycline-like compounds with the ability to functionally crosslink double-strand oligonucleotides. The entire procedure can be performed by robotics, requiring low volumes of compounds and reagents, thereby reducing costs and enabling multiple compounds to be assessed on a single microtitre plate.


Assuntos
Automação , Reagentes de Ligações Cruzadas/farmacologia , Adutos de DNA/efeitos dos fármacos , Desenvolvimento de Medicamentos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 28(3): 115260, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870833

RESUMO

Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde. In this study we describe the DNA sequence-specific binding properties of the mitoxantrone analogue WEHI-150 which is the first anthracenedione to form apparent DNA crosslinks mediated by formaldehyde. The utility of this compound lies in the versatility of the covalent binding modes displayed. Unlike other anthracenediones described to date, WEHI-150 can mediate covalent adducts that are independent of interactions with the N-2 of guanine and is capable of adduct formation at novel DNA sequences. Moreover, these covalent adducts incorporate more than one formaldehyde-mediated bond with DNA, thus facilitating the formation of highly lethal DNA crosslinks. The versatility of binding observed is anticipated to allow the next generation of anthracenediones to interact with a broader spectrum of nucleic acid species than previously demonstrated by the parent compounds, thus allowing for more diverse biological activities.


Assuntos
DNA/efeitos dos fármacos , Formaldeído/farmacologia , Mitoxantrona/farmacologia , Animais , Bovinos , Relação Dose-Resposta a Droga , Formaldeído/química , Espectrometria de Massas , Mitoxantrona/análogos & derivados , Mitoxantrona/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
4.
Int J Educ Dev ; 79: 102283, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33012970

RESUMO

This article reflects upon the history of the Journal, its evolving nature and rationale and upon possibilities and priorities for the future in what are uncertain times for all.

5.
Med Res Rev ; 36(2): 248-99, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26286294

RESUMO

Mitoxantrone is a synthetic anthracenedione originally developed to improve the therapeutic profile of the anthracyclines and is commonly applied in the treatment of breast and prostate cancers, lymphomas, and leukemias. A comprehensive overview of the drug's molecular, biochemical, and cellular pharmacology is presented here, beginning with the cardiotoxic nature of its predecessor doxorubicin and how these properties shaped the pharmacology of mitoxantrone itself. Although mitoxantrone is firmly established as a DNA topoisomerase II poison within mammalian cells, it is now clear that the drug interacts with a much broader range of biological macromolecules both covalently and noncovalently. Here, we consider each of these interactions in the context of their wider biological relevance to cancer therapy and highlight how they may be exploited to further enhance the therapeutic value of mitoxantrone. In doing so, it is now clear that mitoxantrone is more than just another topoisomerase II poison.


Assuntos
Mitoxantrona/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mitoxantrona/administração & dosagem , Mitoxantrona/química , Mitoxantrona/farmacocinética , Inibidores da Topoisomerase II/química
6.
Nat Chem Biol ; 9(6): 390-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603658

RESUMO

The prosurvival BCL-2 family protein BCL-X(L) is often overexpressed in solid tumors and renders malignant tumor cells resistant to anticancer therapeutics. Enhancing apoptotic responses by inhibiting BCL-X(L) will most likely have widespread utility in cancer treatment and, instead of inhibiting multiple prosurvival BCL-2 family members, a BCL-X(L)-selective inhibitor would be expected to minimize the toxicity to normal tissues. We describe the use of a high-throughput screen to discover a new series of small molecules targeting BCL-X(L) and their structure-guided development by medicinal chemistry. The optimized compound, WEHI-539 (7), has high affinity (subnanomolar) and selectivity for BCL-X(L) and potently kills cells by selectively antagonizing its prosurvival activity. WEHI-539 will be an invaluable tool for distinguishing the roles of BCL-X(L) from those of its prosurvival relatives, both in normal cells and notably in malignant tumor cells, many of which may prove to rely upon BCL-X(L) for their sustained growth.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/química , Animais , Apoptose , Benzotiazóis/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/química , Cinética , Camundongos , Modelos Químicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética
7.
Proc Natl Acad Sci U S A ; 106(49): 20723-7, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19926852

RESUMO

Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and are attractive targets for drug discovery. Haloxyfop and tepraloxydim belong to two distinct classes of commercial herbicides and kill sensitive plants by inhibiting the carboxyltransferase (CT) activity of ACC. Our earlier structural studies showed that haloxyfop is bound near the active site of the CT domain, at the interface of its dimer, and a large conformational change in the dimer interface is required for haloxyfop binding. We report here the crystal structure at 2.3 A resolution of the CT domain of yeast ACC in complex with tepraloxydim. The compound has a different mechanism of inhibiting the CT activity compared to haloxyfop, as well as the mammalian ACC inhibitor CP-640186. Tepraloxydim probes a different region of the dimer interface and requires only small but important conformational changes in the enzyme, in contrast to haloxyfop. The binding mode of tepraloxydim explains the structure-activity relationship of these inhibitors, and provides a molecular basis for their distinct sensitivity to some of the resistance mutations, as compared to haloxyfop. Despite the chemical diversity between haloxyfop and tepraloxydim, the compounds do share two binding interactions to the enzyme, which may be important anchoring points for the development of ACC inhibitors.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Cicloexanonas/farmacologia , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Oximas/farmacologia , Saccharomyces cerevisiae/enzimologia , Acetil-CoA Carboxilase/metabolismo , Cristalografia por Raios X , Cicloexanonas/química , Cicloexanonas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Resistência a Herbicidas/genética , Herbicidas/química , Herbicidas/metabolismo , Mutação/genética , Oximas/química , Oximas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos
8.
Membranes (Basel) ; 12(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323740

RESUMO

Poly(norbornene)s and poly(ionic liquid)s are two different classes of attractive materials, which are known for their structural tunability and thermal stabilities, and have been extensively studied as gas separation membranes. The incorporation of ionic liquids (ILs) into the poly(norbornene) through post-polymerization has resulted in unique materials with synergistic properties. However, direct polymerization of norbornene-containing IL monomers as gas separation membranes are limited. To this end, a series of norbornene-containing imidazolium-based mono- and di-cationic ILs (NBM-mIm and NBM-DILs) with different connectivity and spacer lengths were synthesized and characterized spectroscopically. Subsequently, the poly(NBM-mIm) with bistriflimide [Tf2N-] and poly([NBM-DILs][Tf2N]2) comprising homo-, random-, and block- (co)polymers were synthesized via ring-opening metathesis polymerization using the air-stable Grubbs second-generation catalyst. Block copolymers (BCPs), specifically, [NBM-mIM][Tf2N] and [NBM-ImCnmIm] [Tf2N]2 (n = 4 and 6) were synthesized at two different compositions, which generated high molecular weight polymers with decent solubility relative to homo- and random (co)polymers of [NBM-DILs] [Tf2N]2. The prepared BCPs were efficiently analyzed by a host of analytical tools, including 1H-NMR, GPC, and WAXD. The successfully BCPs were cast into thin membranes ranging from 47 to 125 µm and their gas (CO2, N2, CH4, and H2) permeations were measured at 20 °C using a time-lag apparatus. These membranes displayed modest CO2 permeability in a non-linear fashion with respect to composition and a reverse trend in CO2/N2 permselectivity was observed, as a usual trade-off behavior between permeability and permselectivity.

9.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712556

RESUMO

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Assuntos
Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antimitóticos/farmacocinética , Antimitóticos/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitose/efeitos dos fármacos , Neoplasias/patologia , Células PC-3 , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Antimicrob Agents Chemother ; 54(5): 1712-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160053

RESUMO

The current treatment for leishmaniasis is based on chemotherapy, which relies on a handful of drugs with serious limitations, such as high cost, toxicity, and a lack of efficacy in regions of endemicity. Therefore, the development of new, effective, and affordable antileishmanial drugs is a global health priority. Leishmania synthesizes a range of mannose-rich glycoconjugates that are essential for parasite virulence and survival. A prerequisite for glycoconjugate biosynthesis is the conversion of monosaccharides to the activated mannose donor, GDP-mannose, the product of a reaction catalyzed by GDP-mannose pyrophosphorylase (GDP-MP). The deletion of the gene encoding GDP-MP in Leishmania led to a total loss of virulence, indicating that the enzyme is an ideal drug target. We developed a phosphate sensor-based high-throughput screening assay to quantify the activity of GDP-MP and screened a library containing approximately 80,000 lead-like compounds for GDP-MP inhibitors. On the basis of their GDP-MP inhibitory properties and chemical structures, the activities of 20 compounds which were not toxic to mammalian cells were tested against ex vivo amastigotes and in macrophage amastigote assays. The most potent compound identified in the primary screen (compound 3), a quinoline derivative, demonstrated dose-dependent activity in both assays (50% inhibitory concentration = 21.9 microM in the macrophage assay) and was shown to be nontoxic to human fibroblasts. In order to elucidate signs of an early structure-activity relationship (SAR) for this class of compounds, we obtained and tested analogues of compound 3 and undertook limited medicinal chemistry optimization, which included the use of a number of SAR probes of the piperazinyl aryl substituent of compound 3. We have identified novel candidate compounds for the design and synthesis of antileishmanial therapeutics.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Nucleotidiltransferases/antagonistas & inibidores , Antiprotozoários/química , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/parasitologia , Humanos , Leishmania major/enzimologia , Leishmaniose Cutânea/parasitologia , Nucleotidiltransferases/metabolismo , Pirazóis/farmacologia , Quinolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Tiadiazóis/farmacologia
11.
Bioorg Med Chem Lett ; 20(15): 4611-3, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20580556

RESUMO

A series of dimeric 1,3-cyclohexanedione oxime ethers were synthesized and found to have significant antiplasmodial activity with IC(50)'s in the range 3-12 microM. The most active dimer was tested in the Plasmodium berghei mouse model of malaria and at a dose of 48 mg/kg gave a 45% reduction in parasitaemia. Several commercial herbicides, all known to be inhibitors of maize acetyl-CoA carboxylase, were also tested for antimalarial activity, but were essentially inactive with the exception of butroxydim which gave an IC(50) of 10 microM.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Antimaláricos/química , Cicloexanonas/química , Inibidores Enzimáticos/química , Oximas/química , Triticum/enzimologia , Acetil-CoA Carboxilase/metabolismo , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Dimerização , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Camundongos , Oximas/síntese química , Oximas/farmacologia , Plasmodium berghei/efeitos dos fármacos
12.
BioDrugs ; 34(3): 297-306, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266678

RESUMO

Since the first approval of a biosimilar medicinal product in 2006, scientific understanding of the features and development of biosimilar medicines has accumulated. This review scrutinizes public information on development programs and the contribution of the clinical studies for biosimilar approval in the European Union (EU) and/or the United States (US) until November 2019. The retrospective evaluation of the programs that eventually obtained marketing authorization and/or licensure revealed that in 95% (36 out of 38) of all programs, the comparative clinical efficacy studies confirmed similarity. In the remaining 5% (2 out of 38), despite meeting efficacy outcomes, the biosimilar candidates exhibited clinical differences in immunogenicity that required changes to the manufacturing process and additional clinical studies to enable biosimilar approval. Both instances of clinical differences in immunogenicity occurred prior to 2010, and the recurrence of these cases is unlikely today due to state-of-the-art assays and improved control of process-related impurities. Biosimilar candidates that were neither approved in the EU nor in the US were not approved due to reasons other than clinical confirmation of efficacy. This review of the development history of biosimilars allows the proposal of a more efficient and expedited biosimilar development without the routine need for comparative clinical efficacy and/or pharmacodynamic studies and without any compromise in quality, safety, or efficacy. This proposal is scientifically valid, consistent with regulation of all biologics, and maintains robust regulatory standards in the assessment of biosimilar candidates. Note: The findings and conclusion of this paper are limited to biosimilar products developed against the regulatory standards in the EU and the US.


Assuntos
Medicamentos Biossimilares , Desenvolvimento de Medicamentos/normas , Medicamentos Biossimilares/efeitos adversos , Medicamentos Biossimilares/normas , Medicamentos Biossimilares/uso terapêutico , Aprovação de Drogas , União Europeia , Humanos , Estados Unidos , United States Food and Drug Administration
13.
Antimicrob Agents Chemother ; 53(7): 2824-33, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19364854

RESUMO

High-throughput screening of 100,000 lead-like compounds led to the identification of nine novel chemical classes of trypanothione reductase (TR) inhibitors worthy of further investigation. Hits from five of these chemical classes have been developed further through different combinations of preliminary structure-activity relationship rate probing and assessment of antiparasitic activity, cytotoxicity, and chemical and in vitro metabolic properties. This has led to the identification of novel TR inhibitor chemotypes that are drug-like and display antiparasitic activity. For one class, a series of analogues have displayed a correlation between TR inhibition and antiparasitic activity. This paper explores the process of identifying, investigating, and evaluating a series of hits from a high-throughput screening campaign.


Assuntos
Antiparasitários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , NADH NADPH Oxirredutases/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Animais , Antiparasitários/síntese química , Antiparasitários/química , Antiparasitários/uso terapêutico , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tripanossomíase/tratamento farmacológico
14.
Org Lett ; 8(3): 419-21, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16435849

RESUMO

[reaction: see text]. A total synthesis of naamidine A is reported. Key benefits of the described pathway include its brevity, its synthetic ease, and its flexibility with respect to the preparation of analogues. Formation of the 2-aminoimidazole core is achieved by condensation of the appropriate alpha-aminoketone with cyanamide.


Assuntos
Produtos Biológicos/síntese química , Imidazóis/síntese química , Animais , Estrutura Molecular , Poríferos/química
15.
Cornea ; 25(10): 1224-6, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172903

RESUMO

PURPOSE: To report the case of a patient with keratoconus who developed a corneal perforation secondary to UV radiation from a tanning lamp. We believe this to be the first case of a corneal perforation secondary to UV radiation. METHODS: The presentation and management of the patient and the pathophysiology of UV keratitis are discussed. RESULTS: Our patient developed a full-thickness corneal perforation after 30 minutes of tanning lamp exposure without eye protection. The cornea was temporized with cyanoacrylate tissue adhesive until penetrating keratoplasty could be performed. CONCLUSION: With an increased understanding of the pathophysiology of UV damage, treatment should be aimed at modulating the disease to reduce the likelihood of a poor outcome.


Assuntos
Córnea/efeitos da radiação , Doenças da Córnea/etiologia , Lesões por Radiação/complicações , Raios Ultravioleta/efeitos adversos , Córnea/patologia , Córnea/cirurgia , Doenças da Córnea/diagnóstico , Doenças da Córnea/cirurgia , Cianoacrilatos/uso terapêutico , Humanos , Ceratocone/complicações , Ceratoplastia Penetrante , Masculino , Lesões por Radiação/diagnóstico , Lesões por Radiação/cirurgia , Radiodermite/etiologia , Ruptura , Adesivos Teciduais/uso terapêutico
16.
J Med Chem ; 48(8): 2964-71, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15828835

RESUMO

The synthesis, antiviral and pharmacokinetic properties of zanamivir (ZMV) dimers 8 and 13 are described. The compounds are highly potent neuraminidase (NA) inhibitors which, along with dimer 3, are being investigated as potential second generation inhaled therapies both for the treatment of influenza and for prophylactic use. They show outstanding activity in a 1 week mouse influenza prophylaxis assay, and compared with ZMV, high concentrations of 8 and 13 are found in rat lung tissue after 1 week. Retention of compounds in rat lung tissue correlated both with molecular weight (excluding 3 and 15) and with a capacity factor K' derived from immobilized artificial membrane (IAM) chromatography (including 3 and 15). Pharmacokinetic parameters for 3, 8 and 13 in rats show the compounds have short to moderate plasma half-lives, low clearances and low volumes of distribution. Dimer 3 shows NA inhibitory activity against N1 viruses including the recent highly pathogenic H5N1 A/Chicken/Vietnam/8/2004. In plaque reduction assays, 3, 8 and 13 show good to outstanding potency against a panel of nine flu A and B virus strains. Consistent with its shorter and more rigid linking group, dimer 8 has been successfully crystallized.


Assuntos
Antivirais/síntese química , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/prevenção & controle , Ácidos Siálicos/química , Ácidos Siálicos/síntese química , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular , Cristalização , Dimerização , Guanidinas , Vírus da Influenza A/enzimologia , Vírus da Influenza B/enzimologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/virologia , Masculino , Membranas Artificiais , Camundongos , Modelos Moleculares , Peso Molecular , Infecções por Orthomyxoviridae/virologia , Piranos , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/farmacocinética , Ácidos Siálicos/farmacologia , Estereoisomerismo , Ensaio de Placa Viral , Zanamivir
17.
Artigo em Inglês | MEDLINE | ID: mdl-15639441

RESUMO

This report describes the applicability of a synthetic chromatography adsorbent for large-scale purification of polyclonal immunoglobulin G from hyper immunised ovine serum. Under optimised conditions, MAbsorbent A2P was shown to bind approximately 27 mg mL(-1) of ovine immunoglobulin from undiluted serum, with eluted IgG purities of >95%, minor levels of albumin (approximately 1%) and undetectable levels of leached ligand in the purified preparations. The results presented here indicate that the optimised affinity capture of immunoglobulin from ovine serum using MAbsorbent A2P is a feasible alternative to Protein A chromatography or sodium sulphate precipitation for the initial capture of antibodies from undiluted serum.


Assuntos
Anticorpos/isolamento & purificação , Cromatografia de Afinidade/métodos , Soros Imunes/imunologia , Proteína Estafilocócica A/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Focalização Isoelétrica , Ovinos
18.
J Med Chem ; 46(15): 3181-4, 2003 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12852746

RESUMO

A series of capsid-binding compounds was screened against human rhinovirus (HRV) using a CPE based assay. The ethyl oxime ether 14 was found to have outstanding anti-HRV activity (median IC(50) 4.75 ng/mL), and unlike the equivalent ethyl ester compound 3 (Pirodavir), it has good oral bioavailability, making it a promising development candidate. Compound 14 illustrates that an oxime ether group can act as a metabolically stable bioisostere for an ester functionality.


Assuntos
Antivirais/síntese química , Capsídeo/metabolismo , Oximas/síntese química , Rhinovirus/efeitos dos fármacos , Administração Oral , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Disponibilidade Biológica , Linhagem Celular , Éteres , Feminino , Humanos , Masculino , Camundongos , Oximas/farmacocinética , Oximas/farmacologia , Piperidinas/farmacocinética , Piperidinas/farmacologia , Ligação Proteica , Piridazinas/farmacocinética , Piridazinas/farmacologia , Ratos , Relação Estrutura-Atividade
19.
Int J Parasitol ; 44(5): 285-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24583112

RESUMO

Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor. The apicoplast is a useful drug target but the specificity of compounds believed to target apicoplast fatty acid biosynthesis has become uncertain, as this pathway is not essential in blood stages of the parasite. Herbicides that inhibit the plastid acetyl Coenzyme A (Co-A) carboxylase of plants also kill Plasmodium falciparum in vitro, but their mode of action remains undefined. We characterised the gene for acetyl Co-A carboxylase in P. falciparum. The P. falciparum acetyl-CoA carboxylase gene product is expressed in blood stage parasites and accumulates in the apicoplast. Ablation of the gene did not render parasites insensitive to herbicides, suggesting that these compounds are acting off-target in blood stages of P. falciparum.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Apicoplastos/enzimologia , Cicloexanonas/metabolismo , Inibidores Enzimáticos/metabolismo , Herbicidas/metabolismo , Plasmodium falciparum/enzimologia , Acetil-CoA Carboxilase/genética , Deleção de Genes , Perfilação da Expressão Gênica
20.
ACS Med Chem Lett ; 5(6): 662-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944740

RESUMO

Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa