Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Nat Immunol ; 25(3): 496-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356058

RESUMO

Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Linfócitos T Reguladores , Feminino , Masculino , Humanos , Gordura Intra-Abdominal , Citocinas , Inflamação , Glucose
2.
Cell ; 175(5): 1289-1306.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454647

RESUMO

Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Transdução de Sinais
3.
FASEB J ; 38(10): e23647, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38787599

RESUMO

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Arginina , Músculo Esquelético , Proteína-Arginina N-Metiltransferases , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Arginina/metabolismo , Arginina/análogos & derivados , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Camundongos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Masculino , Metilação , Feminino , Processamento de Proteína Pós-Traducional , Camundongos Endogâmicos C57BL , Proteoma/metabolismo
4.
Nature ; 567(7747): 187-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814737

RESUMO

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Assuntos
Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/genética , Proteômica , Animais , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Lipídeos/classificação , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/genética , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
Am J Physiol Endocrinol Metab ; 325(3): E227-E238, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493472

RESUMO

Acute exercise induces changes in circulating proteins, which are known to alter metabolism and systemic energy balance. Skeletal muscle is a primary contributor to changes in the plasma proteome with acute exercise. An important consideration when assessing the endocrine function of muscle is the presence of different fiber types, which show distinct functional and metabolic properties and likely secrete different proteins. Similarly, adipokines are important regulators of systemic metabolism and have been shown to differ between depots. Given the health-promoting effects of exercise, we proposed that understanding depot-specific remodeling of protein secretion in muscle and adipose tissue would provide new insights into intertissue communication and uncover novel regulators of energy homeostasis. Here, we examined the effect of endurance exercise training on protein secretion from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscle and visceral and subcutaneous adipose tissue. High-fat diet-fed mice were exercise trained for 6 wk, whereas a Control group remained sedentary. Secreted proteins from excised EDL and soleus muscle, inguinal, and epididymal adipose tissues were detected using mass spectrometry. We detected 575 and 784 secreted proteins from EDL and soleus muscle and 738 and 920 proteins from inguinal and epididymal adipose tissue, respectively. Of these, 331 proteins were secreted from all tissues, whereas secretion of many other proteins was tissue and depot specific. Exercise training led to substantial remodeling of protein secretion from EDL, whereas soleus showed only minor changes. Myokines released exclusively from EDL or soleus were associated with glycogen metabolism and cellular stress response, respectively. Adipokine secretion was completely refractory to exercise regulation in both adipose depots. This study provides an in-depth resource of protein secretion from muscle and adipose tissue, and its regulation following exercise training, and identifies distinct depot-specific secretion patterns that are related to the metabolic properties of the tissue of origin.NEW & NOTEWORTHY The present study examines the effects of exercise training on protein secretion from fast-twitch and slow-twitch muscle as well as visceral and subcutaneous adipose tissue of obese mice. Although exercise training leads to substantial remodeling of protein secretion from fast-twitch muscle, adipose tissue is completely refractory to exercise regulation.


Assuntos
Músculo Esquelético , Condicionamento Físico Animal , Masculino , Camundongos , Animais , Camundongos Obesos , Músculo Esquelético/metabolismo , Tecido Adiposo/metabolismo , Obesidade/terapia , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Adipocinas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo
6.
Am J Physiol Endocrinol Metab ; 324(2): E187-E198, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629823

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Dysregulation in hepatic lipid metabolism, including increased fatty acid uptake and de novo lipogenesis (DNL), is a hallmark of NAFLD. Here, we investigated dual inhibition of the fatty acid transporter fatty acid translocase (FAT/CD36), and acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL, for the treatment of NAFLD in mice. Mice with hepatic CD36 deletion (Cd36LKO) and wild-type littermates were fed a high-fat diet for 12 wk and treated daily with either oral administration of an ACC inhibitor (GS-834356, Gilead Sciences; ACCi) or vehicle for 8 wk. Neither CD36 deletion or ACC inhibition impacted body composition, energy expenditure, or glucose tolerance. Cd36LKO mice had elevated fasting plasma insulin, suggesting mild insulin resistance. Whole body fatty acid oxidation was significantly decreased in Cd36LKO mice. Liver triglyceride content was significantly reduced in mice treated with ACCi; however, CD36 deletion caused an unexpected increase in liver triglycerides. This was associated with upregulation of genes and proteins of DNL, including ACC, and decreased liver triglyceride secretion ex vivo. Overall, these data confirm the therapeutic utility of ACC inhibition for steatosis resolution but indicate that inhibition of CD36 is not an effective treatment for NAFLD in mice.NEW & NOTEWORTHY Dysregulation of hepatic lipid metabolism is a hallmark of nonalcoholic fatty liver disease. Here, we show that dual inhibition of the de novo lipogenesis enzyme, ACC, and hepatic deletion of the fatty acid transporter, CD36, was ineffective for the treatment of NAFLD in mice. This was due to a paradoxical increase in liver triglycerides with CD36 deletion resulting from decreased hepatic triglyceride secretion and increased lipogenic gene expression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Lipogênese/genética , Ácidos Graxos/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G508-G517, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788331

RESUMO

High-fat (HF) diets (HFDs) and inflammation are risk factors for colon cancer; however, the underlying mechanisms remain to be fully elucidated. The transcriptional corepressor HDAC3 has recently emerged as a key regulator of intestinal epithelial responses to diet and inflammation with intestinal-specific Hdac3 deletion (Hdac3IKO) in mice increasing fatty acid oxidation genes and the rate of fatty acid oxidation in enterocytes. Hdac3IKO mice are also predisposed to experimentally induced colitis; however, whether this is driven by the intestinal metabolic reprogramming and whether this predisposes these mice to intestinal tumorigenesis is unknown. Herein, we examined the effects of intestinal-specific Hdac3 deletion on colitis-associated intestinal tumorigenesis in mice fed a standard (STD) or HFD. Hdac3IKO mice were highly prone to experimentally induced colitis, which was further enhanced by an HFD. Hdac3 deletion also accelerated intestinal tumor development, specifically when fed an HFD and most notably in the small intestine where lipid absorption is maximal. Expression of proteins involved in fatty acid metabolism and oxidation (SCD1, EHHADH) were elevated in the small intestine of Hdac3IKO mice fed an HFD, and these mice displayed increased levels of lipid peroxidation, DNA damage, and apoptosis in their villi, as well as extensive expansion of the stem cell and progenitor cell compartment. These findings reveal a novel role for Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover.NEW & NOTEWORTHY We reveal a novel role for the transcriptional corepressor Hdac3 in suppressing colitis and intestinal tumorigenesis, particularly in the context of consumption of an HFD, and reveal a potential mechanism by which HFDs may increase intestinal tumorigenesis by increasing fatty acid oxidation, DNA damage, and intestinal epithelial cell turnover. We also identify a unique mouse model for investigating the complex interplay between diet, metabolic reprogramming, and tumor predisposition in the intestinal epithelium.


Assuntos
Colite , Neoplasias Intestinais , Animais , Camundongos , Carcinogênese/metabolismo , Proteínas Correpressoras/metabolismo , Colite/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Camundongos Endogâmicos C57BL
8.
FASEB J ; 36(1): e21981, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907601

RESUMO

The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.


Assuntos
Comportamento Animal , Dieta Ocidental , Microbioma Gastrointestinal , Herança Paterna , Comportamento Social , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos
9.
Adv Physiol Educ ; 47(3): 419-426, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759148

RESUMO

A set of core concepts ("big ideas") integral to the discipline of physiology are important for students to understand and demonstrate their capacity to apply. We found poor alignment of learning outcomes in programs with physiology majors (or equivalent) from 17 Australian universities and the 15 core concepts developed by a team in the United States. The objective of this project was to reach Australia-wide consensus on a set of core concepts for physiology, which can be embedded in curricula across Australian universities. A four-phase Delphi method was employed, starting with the assembling of a Task Force of physiology educators with extensive teaching and curriculum development expertise from 25 Australian universities. After two online meetings and a survey, the Task Force reached agreement on seven core concepts of physiology and their descriptors, which were then sent out to the physiology educator community across Australia for agreement. The seven core concepts and their associated descriptions were endorsed through this process (n = 138). In addition, embedding the core concepts across the curriculum was supported by both Task Force members (85.7%) and educators (82.1%). The seven adopted core concepts of human physiology were Cell Membrane, Cell-Cell Communication, Movement of Substances, Structure and Function, Homeostasis, Integration, and Physiological Adaptation. The core concepts were subsequently unpacked into themes and subthemes. If adopted, these core concepts will result in consistency across curricula in undergraduate physiology programs and allow for future benchmarking.NEW & NOTEWORTHY This is the first time Australia-wide agreement has been reached on the core concepts of physiology with the Delphi method. Embedding of the core concepts will result in consistency in physiology curricula, improvements to teaching and learning, and benchmarking across Australian universities.


Assuntos
Currículo , Fisiologia , Humanos , Austrália , Consenso , Técnica Delphi , Universidades , Fisiologia/educação
10.
FASEB J ; 35(12): e22046, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800307

RESUMO

Hexosaminidase A (HexA), a heterodimer consisting of HEXA and HEXB, converts the ganglioside sphingolipid GM2 to GM3 by removing a terminal N-acetyl-d-galactosamine. HexA enzyme deficiency in humans leads to GM2 accumulation in cells, particularly in neurons, and is associated with neurodegeneration. While HexA and sphingolipid metabolism have been extensively investigated in the context of neuronal lipid metabolism, little is known about the metabolic impact of HexA and ganglioside degradation in other tissues. Here, we focussed on the role of HexA in the liver, which is a major regulator of systemic lipid metabolism. We find that hepatic Hexa expression is induced by lipid availability and increased in the presence of hepatic steatosis, which is associated with increased hepatic GM3 content. To assess the impact of HEXA on hepatic lipid metabolism, we used an adeno-associated virus to overexpress HEXA in the livers of high-fat diet fed mice. HEXA overexpression was associated with increased hepatic GM3 content and increased expression of enzymes involved in the degradation of glycated sphingolipids, ultimately driving sphingomyelin accumulation in the liver. In addition, HEXA overexpression led to substantial proteome remodeling in cell surface lipid rafts, which was associated with increased VLDL processing and secretion, hypertriglyceridemia and ectopic lipid accumulation in peripheral tissues. This study established an important role of HEXA in modulating hepatic sphingolipid and lipoprotein metabolism.


Assuntos
Fígado Gorduroso/patologia , Hexosaminidase A/metabolismo , Hipertrigliceridemia/patologia , Lipídeos/análise , Lipoproteínas VLDL/metabolismo , Microdomínios da Membrana/patologia , Esfingolipídeos/metabolismo , Animais , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hexosaminidase A/genética , Hipertrigliceridemia/etiologia , Hipertrigliceridemia/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
11.
J Lipid Res ; 62: 100016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334871

RESUMO

Perilipin 5 (PLIN5) is a lipid-droplet-associated protein that coordinates intracellular lipolysis in highly oxidative tissues and is thought to regulate lipid metabolism in response to phosphorylation by protein kinase A (PKA). We sought to identify PKA phosphorylation sites in PLIN5 and assess their functional relevance in cultured cells and the livers of mice. We detected phosphorylation on S155 and identified S155 as a functionally important site for lipid metabolism. Expression of phosphorylation-defective PLIN5 S155A in Plin5 null cells resulted in decreased rates of lipolysis and triglyceride-derived fatty acid oxidation. FLIM-FRET analysis of protein-protein interactions showed that PLIN5 S155 phosphorylation regulates PLIN5 interaction with adipose triglyceride lipase at the lipid droplet, but not with α-ß hydrolase domain-containing 5. Re-expression of PLIN5 S155A in the liver of Plin5 liver-specific null mice reduced lipolysis compared with wild-type PLIN5 re-expression, but was not associated with other changes in hepatic lipid metabolism. Furthermore, glycemic control was impaired in mice with expression of PLIN5 S155A compared with mice expressing PLIN5. Together, these studies demonstrate that PLIN5 S155 is required for PKA-mediated lipolysis and builds on the body of evidence demonstrating a critical role for PLIN5 in coordinating lipid and glucose metabolism.


Assuntos
Perilipina-5
12.
Am J Physiol Endocrinol Metab ; 320(4): E835-E845, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645252

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is best known as an incretin hormone that is secreted from K-cells of the proximal intestine, but evidence also implicates a role for GIP in regulating lipid metabolism and adiposity. It is well-established that GIP receptor knockout (GIPR KO) mice are resistant to diet-induced obesity; however, the factors mediating this effect remain unresolved. Accordingly, we aimed to elucidate the mechanisms leading to adiposity resistance in GIPR KO mice with a focus on whole-body energy balance and lipid metabolism in adipose tissues. Studies were conducted in age-matched male GIPR KO and wild-type (WT) mice fed a high-fat diet for 10 weeks. GIPR KO mice gained less body weight and fat mass compared to WT littermates, and this was associated with increased energy expenditure but no differences in food intake or fecal energy loss. Upon an oral lipid challenge, fatty acid storage in inguinal adipose tissue was significantly increased in GIPR KO compared with WT mice. This was not related to differential expression of lipoprotein lipase in adipose tissue. Adipose tissue lipolysis was increased in GIPR KO compared with WT mice, particularly following ß-adrenergic stimulation, and could explain why GIPR KO mice gain less adipose tissue despite increased rates of fatty acid storage in inguinal adipose tissue. Taken together, these results suggest that the GIPR is required for normal maintenance of body weight and adipose tissue mass by regulating energy expenditure and lipolysis.NEW & NOTEWORTHY GIPR KO mice fed a high-fat diet have reduced adiposity despite transporting more ingested lipids into adipose tissue. This can be partly explained by accelerated adipose tissue lipolysis and increased energy expenditure in GIPR KO mice. These new insights rationalize targeting the GIPR as part of a weight management strategy in obesity.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Obesidade/genética , Receptores dos Hormônios Gastrointestinais/genética , Adiposidade/genética , Animais , Deleção de Genes , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo
13.
Am J Physiol Endocrinol Metab ; 320(6): E1068-E1084, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843278

RESUMO

Adipose tissue is a primary regulator of energy balance and metabolism. The distribution of adipose tissue depots is of clinical interest because the accumulation of upper-body subcutaneous (ASAT) and visceral adipose tissue (VAT) is associated with cardiometabolic diseases, whereas lower-body glutealfemoral adipose tissue (GFAT) appears to be protective. There is heterogeneity in morphology and metabolism of adipocytes obtained from different regions of the body, but detailed knowledge of the constituent proteins in each depot is lacking. Here, we determined the human adipocyte proteome from ASAT, VAT, and GFAT using high-resolution Sequential Window Acquisition of all Theoretical (SWATH) mass spectrometry proteomics. We quantified 4,220 proteins in adipocytes, and 2,329 proteins were expressed in all three adipose depots. Comparative analysis revealed significant differences between adipocytes from different regions (6% and 8% when comparing VAT vs. ASAT and GFAT, 3% when comparing the subcutaneous adipose tissue depots, ASAT and GFAT), with marked differences in proteins that regulate metabolic functions. The VAT adipocyte proteome was overrepresented with proteins of glycolysis, lipogenesis, oxidative stress, and mitochondrial dysfunction. The GFAT adipocyte proteome predicted the activation of peroxisome proliferator-activated receptor α (PPARα), fatty acid, and branched-chain amino acid (BCAA) oxidation, enhanced tricarboxylic acid (TCA) cycle flux, and oxidative phosphorylation, which was supported by metabolomic data obtained from adipocytes. Together, this proteomic analysis provides an important resource and novel insights that enhance the understanding of metabolic heterogeneity in the regional adipocytes of humans.NEW & NOTEWORTHY Adipocyte metabolism varies depending on anatomical location and the adipocyte protein composition may orchestrate this heterogeneity. We used SWATH proteomics in patient-matched human upper- (visceral and subcutaneous) and lower-body (glutealfemoral) adipocytes and detected 4,220 proteins and distinguishable regional proteomes. Upper-body adipocyte proteins were associated with glycolysis, de novo lipogenesis, mitochondrial dysfunction, and oxidative stress, whereas lower-body adipocyte proteins were associated with enhanced PPARα activation, fatty acid, and BCAA oxidation, TCA cycle flux, and oxidative phosphorylation.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Proteoma/análise , Adipócitos/química , Adipócitos/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos , Proteômica , Gordura Subcutânea/metabolismo
14.
J Hepatol ; 75(3): 524-535, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33887358

RESUMO

BACKGROUNDS & AIMS: Obesity often leads to non-alcoholic fatty liver disease (NAFLD), which can progress from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH). The accumulation of certain lipid subtypes is linked with worsening metabolic and liver disease, however, specific changes during progression from No-NAFL to NAFL then NASH are unresolved. Herein, we characterise the liver, adipose tissue and plasma lipidome of worsening NAFLD in obesity, and evaluate the utility of plasma lipids as biomarkers of NAFLD. METHODS: Venous blood, liver, visceral and subcutaneous adipose tissue samples were obtained from 181 patients undergoing bariatric surgery. NAFLD severity was assessed histologically. Lipidomic analysis was performed using liquid chromatography-tandem mass spectrometry. RESULTS: The liver lipidome showed substantial changes with increasing steatosis, with increased triacylglycerols, diacylglycerols and sphingolipids including ceramide, dihydroceramide, hexosyl-ceramide and GM3 ganglioside species. These lipid species were also increased in plasma with increasing hepatic steatosis and showed strong correlations with liver lipids. Adipose tissue lipidomes showed no correlation with NAFLD. There were no significant changes in liver lipids with NASH compared to NAFL. The addition of plasma lipid variables to routine markers yielded significant improvements in diagnostic accuracy for NASH (AUROC 0.667 vs. 0.785, p = 0.025). CONCLUSION: Overall, these data provide a detailed description of the lipidomic changes with worsening NAFLD, showing significant changes with steatosis but no additional changes with NASH. Alterations in the liver lipidome are paralleled by similar changes in plasma. Further investigation is warranted into the potential utility of plasma lipids as non-invasive biomarkers of NAFLD in obesity. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is characterised by distinct changes in the liver lipidome with steatosis. The development of non-alcoholic steatohepatitis (NASH) does not result in further changes in the lipidome. Lipids within body fat do not appear to influence the lipid profile of the liver or blood. Changes in liver lipids are paralleled by changes in blood lipids. This has potential to be developed into a non-invasive biomarker for NAFLD. CLINICAL TRIAL NUMBER: ACTRN12615000875505.


Assuntos
Fígado Gorduroso/etiologia , Lipidômica/métodos , Obesidade Mórbida/complicações , Adulto , Fígado Gorduroso/fisiopatologia , Feminino , Humanos , Lipidômica/estatística & dados numéricos , Lipídeos/análise , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/fisiopatologia
15.
Physiology (Bethesda) ; 34(2): 134-149, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724128

RESUMO

Obesity-associated comorbidities include non-alcoholic fatty liver disease, Type 2 diabetes, and cardiovascular disease. These diseases are associated with accumulation of lipids in non-adipose tissues, which can impact many intracellular cellular signaling pathways and functions that have been broadly defined as "lipotoxic." This review moves beyond understanding intracellular lipotoxic outcomes and outlines the consequences of lipotoxicity on protein secretion and inter-tissue "cross talk," and the impact this exerts on systemic metabolism.


Assuntos
Metabolismo dos Lipídeos , Obesidade/metabolismo , Transporte Proteico , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Transdução de Sinais
16.
Am J Physiol Endocrinol Metab ; 319(3): E519-E528, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603261

RESUMO

Regional distribution of adipose tissue is an important factor in conferring cardiometabolic risk and obesity-related morbidity. We tested the hypothesis that human visceral adipose tissue (VAT) impairs glucose homeostasis, whereas subcutaneous glutealfemoral adipose tissue (GFAT) protects against the development of impaired glucose homeostasis in mice. VAT and GFAT were collected from patients undergoing bariatric surgery and grafted onto the epididymal adipose tissue of weight- and age-matched severe, combined immunodeficient mice. SHAM mice underwent surgery without transplant of tissue. Mice were fed a high-fat diet after xenograft. Energy homeostasis, glucose metabolism, and insulin sensitivity were assessed 6 wk later. Xenograft of human adipose tissues was successful, as determined by histology, immunohistochemical evaluation of collagen deposition and angiogenesis, and maintenance of lipolytic function. Adipose tissue transplant did not affect energy expenditure, food intake, whole body substrate partitioning, or plasma free fatty acid, triglyceride, and insulin levels. Fasting blood glucose was significantly reduced in GFAT and VAT compared with SHAM, whereas glucose tolerance was improved only in mice transplanted with VAT compared with SHAM mice. This improvement was not associated with differences in whole body insulin sensitivity or plasma insulin between groups. Together, these data suggest that VAT improves glycemic control and GFAT does not protect against the development of high-fat diet-induced glucose intolerance. Hence, the intrinsic properties of VAT and GFAT do not necessarily explain the postulated negative and positive effects of these adipose tissue depots on metabolic health.


Assuntos
Tecido Adiposo/transplante , Glicemia/metabolismo , Controle Glicêmico , Obesidade/sangue , Tecido Adiposo/fisiologia , Adulto , Animais , Composição Corporal , Colágeno/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Feminino , Homeostase , Humanos , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Fisiológica , Gordura Subcutânea/metabolismo
17.
Prostate ; 80(11): 906-914, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519789

RESUMO

BACKGROUND: There is convincing evidence that men with advanced prostate cancer experience improved quality of life as a result of exercise therapy, although there is limited preclinical, and no clinical, data to directly support the notion that exercise training improves prostate cancer prognosis or outcome. The aim of this study was to investigate the effect of regular exercise training on the early stages of prostate cancer progression, as well as assessing whether alterations to prostate cancer metabolism are induced by exercise. METHODS: Mice with prostate-specific deletion of Pten (Pten-/- ) remained sedentary or underwent 6 weeks of endurance exercise training or high-intensity exercise training involving treadmill running. At the conclusion of the training period, the prostate lobes were excised. A portion of fresh tissue was used to assess glucose, glutamine, and fatty acid metabolism by radiometric techniques and a second portion was fixed for histopathology. RESULTS: Despite the implementation of an effective exercise regime, as confirmed by improvements in running capacity, neither prostate mass, cell proliferation or the incidence of high-grade prostate intraepithelial hyperplasia or noninvasive carcinoma in situ were significantly different between groups. Similarly, neither glucose uptake, oxidation and de novo lipogenesis, glutamine oxidation, or fatty acid uptake, oxidation and storage into various lipids were significantly different in prostate tissue obtained from untrained and exercise trained mice. CONCLUSIONS: These results show that 6 weeks of moderate or high-intensity exercise training does not alter substrate metabolism in the prostate or slow the progression of Pten-null prostate cancer. These results question whether exercise is a useful therapy to prevent or delay prostate cancer progression.


Assuntos
PTEN Fosfo-Hidrolase/deficiência , Condicionamento Físico Animal , Neoplasias da Próstata/terapia , Animais , Progressão da Doença , Masculino , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia
18.
FASEB J ; 33(12): 13267-13279, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31533003

RESUMO

Adipose tissue plays a major role in the regulation of systemic metabolic homeostasis, with the AP2 adaptor complex being important in clathrin-mediated endocytosis (CME) of various cell surface receptors, including glucose transporter 4, the insulin receptor, and ß-adrenergic receptors (ARs). One of the AP2 subunits, adaptor-related protein complex 2, α2 subunit (Ap2a2), has recently been identified as a peroxisome proliferator-activated receptor (PPAR)α target gene. The effects of PPARα on the AP2 adaptor complex and CME are unknown. We generated adipocyte-specific Ap2a2 knockout mice and investigated their metabolism when fed a standard chow or high-fat diet, without and with supplementation with the PPARα-agonist WY-14643 (WY). Although Ap2a2 deletion had only minor effects on glycaemic control, it led to substantial impairment in ß-adrenergic activation of lipolysis, as evidenced by a loss of cAMP response, PKA activation, and glycerol/fatty acid release. These differences were related to increased cell surface localization of the ß2- and ß3-ARs. Lipolytic defects were accompanied by impaired WY-mediated loss of fat mass and whole-body fat oxidation. This study demonstrates a novel role for PPARα in ß-adrenergic regulation of adipose tissue lipolysis and for adipose tissue in supplying adequate substrate to other peripheral tissues to accommodate the increase in systemic fatty acid oxidation that occurs upon treatment with PPARα agonists.-Montgomery, M. K., Bayliss, J., Keenan, S., Rhost, S., Ting, S. B., Watt, M. J. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Tecido Adiposo/metabolismo , PPAR alfa/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Adipócitos/metabolismo , Animais , Immunoblotting , Lipólise/genética , Lipólise/fisiologia , Camundongos , Camundongos Knockout
19.
Curr Diab Rep ; 20(6): 20, 2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32306181

RESUMO

PURPOSE OF REVIEW: Impairments in mitochondrial function in patients with insulin resistance and type 2 diabetes have been disputed for decades. This review aims to briefly summarize the current knowledge on mitochondrial dysfunction in metabolic tissues and to particularly focus on addressing a new perspective of mitochondrial dysfunction, the altered capacity of mitochondria to communicate with other organelles within insulin-resistant tissues. RECENT FINDINGS: Organelle interactions are temporally and spatially formed connections essential for normal cell function. Recent studies have shown that mitochondria interact with various cellular organelles, such as the endoplasmic reticulum, lysosomes and lipid droplets, forming inter-organelle junctions. We will discuss the current knowledge on alterations in these mitochondria-organelle interactions in insulin resistance and diabetes, with a focus on changes in mitochondria-lipid droplet communication as a major player in ectopic lipid accumulation, lipotoxicity and insulin resistance.


Assuntos
Comunicação Celular/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Resistência à Insulina/fisiologia , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Organelas/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Lisossomos/metabolismo , Lisossomos/fisiologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Organelas/metabolismo , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Peroxissomos/metabolismo , Peroxissomos/fisiologia
20.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30389725

RESUMO

Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo , Proteínas Musculares/metabolismo , Termogênese , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adrenérgicos/farmacologia , Animais , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular/efeitos dos fármacos , Temperatura Baixa , Feminino , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Metabolismo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas/genética , Proteolipídeos/genética , Proteolipídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa