Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 287(10): 7289-300, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22219186

RESUMO

Stalled biogenesis of the mitochondrial cytochrome c oxidase (CcO) complex results in degradation of subunits containing redox cofactors. The conserved Oma1 metalloproteinase mediates facile Cox1 degradation in cells lacking the Coa2 assembly factor, but not in a series of other mutants stalled in CcO maturation. Oma1 is activated in coa2Δ cells, but the selective Cox1 degradation does not arise merely from its activation. Oma1 is also active in cells with dysfunctional mitochondria and cox11Δ cells impaired in CcO maturation, but this activation does not result in Oma1-mediated Cox1 degradation. The facile and selective degradation of Cox1 in coa2Δ cells, relative to other CcO assembly mutants, is likely due to impaired hemylation and subsequent misfolding of the subunit. Specific Cox1 proteolysis in coa2Δ cells arises from a combination of Oma1 activation and a susceptible conformation of Cox1.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases/genética , Mitocôndrias/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 287(32): 26715-26, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22669974

RESUMO

The synthesis of the heme a cofactor used in cytochrome c oxidase (CcO) is dependent on the sequential action of heme o synthase (Cox10) and heme a synthase (Cox15). The active state of Cox10 appears to be a homo-oligomeric complex, and formation of this complex is dependent on the newly synthesized CcO subunit Cox1 and the presence of an early Cox1 assembly intermediate. Cox10 multimerization is triggered by progression of Cox1 from the early assembly intermediate to downstream intermediates. The CcO assembly factor Coa2 appears important in coupling the presence of newly synthesized Cox1 to Cox10 oligomerization. Cells lacking Coa2 are impaired in Cox10 complex formation as well as the formation of a high mass Cox15 complex. Increasing Cox1 synthesis in coa2Δ cells restores respiratory function if Cox10 protein levels are elevated. The C-terminal segment of Cox1 is important in triggering Cox10 oligomerization. Expression of the C-terminal 54 residues of Cox1 appended to a heterologous matrix protein leads to efficient Cox10 complex formation in coa2Δ cells, but it fails to induce Cox15 complex formation. The state of Cox10 was evaluated in mutants, which predispose human patients to CcO deficiency and the neurological disorder Leigh syndrome. The presence of the D336V mutation in the yeast Cox10 backbone results in a catalytically inactive enzyme that is fully competent to oligomerize. Thus, Cox10 oligomerization and catalytic activation are separate processes and can be uncoupled.


Assuntos
Alquil e Aril Transferases/metabolismo , Biopolímeros/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Primers do DNA , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 286(12): 10137-46, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21257754

RESUMO

Saccharomyces cerevisiae cells lacking Mne1 are deficient in intron splicing in the gene encoding the Cox1 subunit of cytochrome oxidase but contain wild-type levels of the bc(1) complex. Thus, Mne1 has no role in splicing of COB introns or expression of the COB gene. Northern experiments suggest that splicing of the COX1 aI5ß intron is dependent on Mne1 in addition to the previously known Mrs1, Mss116, Pet54, and Suv3 factors. Processing of the aI5ß intron is similarly impaired in mne1Δ and mrs1Δ cells and overexpression of Mrs1 partially restores the respiratory function of mne1Δ cells. Mrs1 is known to function in the initial transesterification reaction of splicing. Mne1 is a mitochondrial matrix protein loosely associated with the inner membrane and is found in a high mass ribonucleoprotein complex specifically associated with the COX1 mRNA even within an intronless strain. Mne1 does not appear to have a secondary function in COX1 processing or translation, because disruption of MNE1 in cells containing intronless mtDNA does not lead to a respiratory growth defect. Thus, the primary defect in mne1Δ cells is splicing of the aI5ß intron in COX1.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Íntrons/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Splicing de RNA/fisiologia , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/fisiologia , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell Biol ; 30(4): 1004-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995914

RESUMO

The biogenesis of cytochrome c oxidase initiates with synthesis and maturation of the mitochondrion-encoded Cox1 subunit prior to the addition of other subunits. Cox1 contains redox cofactors, including the low-spin heme a center and the heterobimetallic heme a(3):Cu(B) center. We sought to identify the step in the maturation of Cox1 in which the redox cofactor centers are assembled. Newly synthesized Cox1 is incorporated within one early assembly intermediate containing Mss51 in Saccharomyces cerevisiae. Subsequent Cox1 maturation involves the progression to downstream assembly intermediates involving Coa1 and Shy1. We show that the two heme a cofactor sites in Cox1 form downstream of Mss51- and Coa1-containing Cox1 intermediates. These Cox1 intermediates form normally in cells defective in heme a biosynthesis or in cox1 mutant strains with heme a axial His mutations. In contrast, the Shy1-containing Cox1 assembly intermediate is perturbed in the absence of heme a. Heme a(3) center formation in Cox1 appears to be chaperoned by Shy1. Cu(B) site formation occurs near or at the Shy1-containing Cox1 assembly intermediate also. The Cu(B) metallochaperone Cox11 transiently interacts with Shy1 by coimmunoprecipitation. The Shy1-containing Cox1 complex is markedly attenuated in cells lacking Cox11 but is partially restored with a nonfunctional Cox11 mutant. Thus, formation of the heterobimetallic Cu(B):heme a(3) site likely occurs in the Shy1-containing Cox1 complex.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Heme/análogos & derivados , Heme/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Ligação Proteica , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Mol Biol ; 391(2): 275-81, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19540849

RESUMO

Transfer-messenger RNA (tmRNA) acts first as a tRNA and then as an mRNA template to rescue stalled ribosomes in eubacteria. Together with its protein partner, SmpB (small protein B), tmRNA enters stalled ribosomes and transfers an Ala residue to the growing polypeptide chain. A remarkable step then occurs: the ribosome leaves the stalled mRNA and resumes translation using tmRNA as a template, adding a short peptide tag that destines the aborted protein for destruction. Exactly how the ribosome switches templates, resuming translation on tmRNA in the proper reading frame, remains unknown. Within the tmRNA sequence itself, five nucleotides (U85AGUC) immediately upstream of the first codon appear to direct frame selection. In particular, mutation of the conserved A86 results in severe loss of function both in vitro and in vivo. The A86C mutation causes translation to resume exclusively in the +1 frame. Several candidate binding partners for this upstream sequence have been identified in vitro. Using a genetic selection for tmRNA activity in Escherichia coli, we identified mutations in the SmpB protein that restore the function of A86C tmRNA in vivo. The SmpB mutants increase tagging in the normal reading frame and reduce tagging in the +1 frame. These results demonstrate that SmpB is functionally linked with the sequence upstream of the tmRNA template; both contribute to reading frame selection on tmRNA.


Assuntos
Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Conformação Proteica , RNA Bacteriano/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa