Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
PLoS Biol ; 19(8): e3001322, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411089

RESUMO

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Assuntos
Aclimatação , Organismos Aquáticos/microbiologia , Evolução Biológica , Ecologia , Microbiota , Animais , Ecossistema , Humanos , Simbiose
2.
Proc Natl Acad Sci U S A ; 117(24): 13615-13625, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471944

RESUMO

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Animais , Abelhas/genética , Comportamento Animal , Evolução Biológica , Evolução Molecular , Feminino , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Metamorfose Biológica , Comportamento Social
3.
PLoS Biol ; 17(11): e3000533, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710600

RESUMO

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.


Assuntos
Organismos Aquáticos/microbiologia , Microbiota/fisiologia , Simbiose/fisiologia , Animais , Bactérias/classificação , Ecossistema , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos
4.
Biol Lett ; 15(4): 20180740, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30940017

RESUMO

A classic prediction of kin selection theory is that a mixed population of social and solitary nests of haplodiploid insects should exhibit a split sex ratio among offspring: female biased in social nests, male biased in solitary nests. Here, we provide the first evidence of a solitary-social split sex ratio, using the sweat bee Megalopta genalis (Halictidae). Data from 2502 offspring collected from naturally occurring nests across 6 years spanning the range of the M. genalis reproductive season show that despite significant yearly and seasonal variation, the offspring sex ratio of social nests is consistently more female biased than in solitary nests. This suggests that split sex ratios may facilitate the evolutionary origins of cooperation based on reproductive altruism via kin selection.


Assuntos
Razão de Masculinidade , Comportamento Social , Altruísmo , Animais , Abelhas , Evolução Biológica , Feminino , Masculino , Reprodução
5.
Proc Natl Acad Sci U S A ; 113(36): 10121-6, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551065

RESUMO

Attine ants evolved farming 55-60 My before humans. Although evolutionarily derived leafcutter ants achieved industrial-scale farming, extant species from basal attine genera continue to farm loosely domesticated fungal cultivars capable of pursuing independent reproductive interests. We used feeding experiments with the basal attine Mycocepurus smithii to test whether reproductive allocation conflicts between farmers and cultivars constrain crop yield, possibly explaining why their mutualism has remained limited in scale and productivity. Stoichiometric and geometric framework approaches showed that carbohydrate-rich substrates maximize growth of both edible hyphae and inedible mushrooms, but that modest protein provisioning can suppress mushroom formation. Worker foraging was consistent with maximizing long-term cultivar performance: ant farmers could neither increase carbohydrate provisioning without cultivars allocating the excess toward mushroom production, nor increase protein provisioning without compromising somatic cultivar growth. Our results confirm that phylogenetically basal attine farming has been very successful over evolutionary time, but that unresolved host-symbiont conflict may have precluded these wild-type symbioses from rising to ecological dominance. That status was achieved by the evolutionarily derived leafcutter ants following full domestication of a coevolving cultivar 30-35 Mya after the first attine ants committed to farming.


Assuntos
Agaricales/efeitos dos fármacos , Formigas/fisiologia , Evolução Biológica , Proteínas/farmacologia , Simbiose/fisiologia , Agaricales/fisiologia , Animais , Formigas/classificação , Metabolismo dos Carboidratos , Carboidratos/farmacologia , Filogenia , Proteínas/metabolismo
7.
Proc Biol Sci ; 284(1846)2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28053060

RESUMO

Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages.


Assuntos
Abelhas/genética , Comportamento Animal , Evolução Biológica , Expressão Gênica , Comportamento Social , Animais , Genes de Insetos , Fenótipo
8.
Nature ; 471(7339): E8-9; author reply E9-10, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21430725

RESUMO

Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Arguably the defining characteristic of the scientific process is its capacity for self-criticism and correction. Nowak et al. challenge proposed connections between relatedness and the evolution of eusociality, suggest instead that defensible nests and "spring-loaded" traits are key, and present alternative modelling approaches. They then dismiss the utility of Hamilton's insight that relatedness has a profound evolutionary effect, formalized in his widely accepted inclusive fitness theory as Hamilton's rule ("Rise and fall of inclusive fitness theory"). However, we believe that Nowak et al. fail to make their case for logical, theoretical and empirical reasons.


Assuntos
Aptidão Genética , Modelos Biológicos , Altruísmo , Animais , Evolução Biológica , Comportamento Cooperativo , Feminino , Teoria dos Jogos , Genética Populacional , Hereditariedade , Masculino , Modelos Genéticos , Reprodutibilidade dos Testes , Seleção Genética , Razão de Masculinidade
9.
J Exp Biol ; 219(Pt 10): 1467-75, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27207952

RESUMO

Insects rely on the olfactory system to detect a vast diversity of airborne molecules in their environment. Highly sensitive olfactory tuning is expected to evolve when detection of a particular chemical with great precision is required in the context of foraging and/or finding mates. Male neotropical orchid bees (Euglossini) collect odoriferous substances from multiple sources, store them in specialized tibial pouches and later expose them at display sites, presumably as mating signals to females. Previous analysis of tibial compounds among sympatric species revealed substantial chemical disparity in chemical composition among lineages with outstanding divergence between closely related species. Here, we tested whether specific perfume phenotypes coevolve with matching olfactory adaptations in male orchid bees to facilitate the location and harvest of species-specific perfume compounds. We conducted electroantennographic (EAG) measurements on males of 15 sympatric species in the genus Euglossa that were stimulated with 18 compounds present in variable proportions in male hind tibiae. Antennal response profiles were species-specific across all 15 species, but there was no conspicuous differentiation between closely related species. Instead, we found that the observed variation in EAG activity follows a Brownian motion model of trait evolution, where the probability of differentiation increases proportionally with lineage divergence time. However, we identified strong antennal responses for some chemicals that are present as major compounds in the perfume of the same species, thus suggesting that sensory specialization has occurred within multiple lineages. This sensory specialization was particularly apparent for semi-volatile molecules ('base note' compounds), thus supporting the idea that such compounds play an important role in chemical signaling of euglossine bees. Overall, our study found no close correspondence between antennal responses and behavioral preferences/tibial contents, but confirms the utility of EAG profiling for discovering certain behaviorally active compounds.


Assuntos
Abelhas/fisiologia , Orchidaceae/parasitologia , Perfumes/análise , Olfato/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Masculino , Características de Residência , Solventes , Especificidade da Espécie
10.
J Anim Ecol ; 85(5): 1210-21, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27136600

RESUMO

Fungus-growing ants (Attini) have evolved an obligate dependency upon a basidiomycete fungus that they cultivate as their food. Less well known is that the crop fungus is also used by many attine species to cover their eggs, larvae and pupae. The adaptive functional significance of this brood covering is poorly understood. One hypothesis to account for this behaviour is that it is part of the pathogen protection portfolio when many thousands of sister workers live in close proximity and larvae and pupae are not protected by cells, as in bees and wasps, and are immobile. We performed behavioural observations on brood covering in the leaf-cutting ant Acromyrmex echinatior, and we experimentally manipulated mycelial cover on pupae and exposed them to the entomopathogenic fungus Metarhizium brunneum to test for a role in pathogen resistance. Our results show that active mycelial brood covering by workers is a behaviourally plastic trait that varies temporally, and across life stages and castes. The presence of a fungal cover on the pupae reduced the rate at which conidia appeared and the percentage of pupal surface that produced pathogen spores, compared to pupae that had fungal cover experimentally removed or naturally had no mycelial cover. Infected pupae with mycelium had higher survival rates than infected pupae without the cover, although this depended upon the time at which adult sister workers were allowed to interact with pupae. Finally, workers employed higher rates of metapleural gland grooming to infected pupae without mycelium than to infected pupae with mycelium. Our results imply that mycelial brood covering may play a significant role in suppressing the growth and subsequent spread of disease, thus adding a novel layer of protection to their defence portfolio.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Basidiomycota/fisiologia , Metarhizium/fisiologia , Comportamento de Nidação , Simbiose , Animais , Formigas/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Pupa/fisiologia
11.
Proc Biol Sci ; 282(1801): 20142502, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25567649

RESUMO

Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved.


Assuntos
Formigas/anatomia & histologia , Formigas/fisiologia , Corpos Pedunculados/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Panamá , Comportamento Social
12.
Proc Biol Sci ; 282(1803): 20142886, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25694620

RESUMO

One of the hallmarks of eusociality is that workers forego their own reproduction to assist their mother in raising siblings. This seemingly altruistic behaviour may benefit workers if gains in indirect fitness from rearing siblings outweigh the loss of direct fitness. If worker presence is advantageous to mothers, however, eusociality may evolve without net benefits to workers. Indirect fitness benefits are often cited as evidence for the importance of inclusive fitness in eusociality, but have rarely been measured in natural populations. We compared inclusive fitness of alternative social strategies in the tropical sweat bee, Megalopta genalis, for which eusociality is optional. Our results show that workers have significantly lower inclusive fitness than females that found their own nests. In mathematical simulations based on M. genalis field data, eusociality cannot evolve with reduced intra-nest relatedness. The simulated distribution of alternative social strategies matched observed distributions of M. genalis social strategies when helping behaviour was simulated as the result of maternal manipulation, but not as worker altruism. Thus, eusociality in M. genalis is best explained through kin selection, but the underlying mechanism is likely maternal manipulation.


Assuntos
Abelhas/fisiologia , Aptidão Genética , Altruísmo , Animais , Abelhas/genética , Comportamento Animal , Evolução Molecular , Feminino , Modelos Biológicos , Comportamento de Nidação , Reprodução , Comportamento Social
13.
Proc Biol Sci ; 282(1807): 20150212, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25925100

RESUMO

Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.


Assuntos
Formigas/metabolismo , Glândulas Exócrinas/metabolismo , Hypocreales/fisiologia , Metarhizium/fisiologia , Fenilacetatos/metabolismo , Animais , Formigas/microbiologia , Evolução Biológica , Especificidade da Espécie
14.
Am Nat ; 181(4): 571-82, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23535621

RESUMO

Multipartner mutualisms have potentially complex dynamics, with compensatory responses when one partner is lost or relegated to a minor role. Fungus-growing ants (Attini) are mutualistic associates of basidiomycete fungi and antibiotic-producing actinomycete bacteria; the former are attacked by specialized fungi (Escovopsis) and diverse generalist microbes. Ants deploy biochemical defenses from bacteria and metapleural glands (MGs) and express different behaviors to control contaminants. We studied four Trachymyrmex species that differed in relative abundance of actinomycetes to understand interactions among antimicrobial tactics that are contingent on the nature of infection. MG grooming rate and actinomycete abundance were negatively correlated. The two species with high MG grooming rates or abundant actinomycetes made relatively little use of behavioral defenses. Conversely, the two species with relatively modest biochemical defenses relied heavily on behavior. Trade-offs suggest that related species can evolutionarily diverge to rely on different defense mechanisms against the same threat. Neither bacterial symbionts nor MG secretions thus appear to be essential for mounting defenses against the specialized pathogen Escovopsis, but reduced investment in one of these defense modes tends to increase investment in the other.


Assuntos
Formigas/fisiologia , Basidiomycota/fisiologia , Comportamento Animal , Actinobacteria/metabolismo , Animais , Antibacterianos/metabolismo , Especificidade da Espécie
15.
New Phytol ; 198(1): 241-251, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23406415

RESUMO

Fungal symbionts that live asymptomatically inside plant tissues (endophytes) can influence plant-insect interactions. Recent work has shown that damage by leaf-cutting ants, a major Neotropical defoliator, is reduced to almost half in plants with high densities of endophytes. We investigated changes in the phenotype of leaves that could influence ants' behavior to result in the reduction of foliar damage. We produced cucumber seedlings with high and low densities of one common endophyte species, Colletotrichum tropicale. We used the leaves in bioassays and to compare chemical and physical leaf characteristics important for ants' food selection. Ants cut about one-third more area of cucumber leaves with lower densities of endophytes and removed c. 20% more paper disks impregnated with the extracts of those leaves compared with leaves and disks from plants hosting the fungus. Colletotrichum tropicale colonization did not cause detectable changes in the composition of volatile compounds, cuticular waxes, nutrients or leaf toughness. Our study shows that endophytes changed leaf chemistry and suggests that compounds with relative low volatility released after leaf wounding are a major factor influencing foraging decisions by ants when choosing between plants with low or high endophyte loads.


Assuntos
Formigas/fisiologia , Colletotrichum/fisiologia , Cucumis sativus/microbiologia , Herbivoria/fisiologia , Folhas de Planta/química , Folhas de Planta/microbiologia , Simbiose/fisiologia , Animais , Bioensaio , Colletotrichum/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Cucumis sativus/química , Epiderme Vegetal/química , Solventes , Compostos Orgânicos Voláteis/análise , Ceras/análise
16.
Horm Behav ; 63(1): 1-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22986338

RESUMO

The evolution of eusociality is hypothesized to have involved de-coupling parental care from reproduction mediated by changes in endocrine regulation. While data for obligately eusocial insects are consistent with this hypothesis, we lack information from species representative of the transition from solitary reproduction to eusociality. Here we report the first evidence for a link between endocrine processes and social behavior in a facultatively eusocial bee, Megalopta genalis (Halictidae). Using females that varied in social, reproductive, and ecological context, we measured juvenile hormone (JH), a major regulator of colony caste dynamics in other eusocial species. JH was low at adult emergence, but elevated after 10 days in all nesting females. Females reared in cages with ad lib nutrition, however, did not elevate JH levels after 10 days. All reproductive females had significantly more JH than all age-matched non-reproductive females, suggesting a gonadotropic function. Among females in established nests, JH was higher in queens than workers and solitary reproductives, suggesting a role for JH in social dominance. A lack of significant differences in JH between solitary reproductives and non-reproductive workers suggests that JH content reflects more than reproductive status. Our data support the hypothesis that endocrine modifications are involved in the evolutionary decoupling of reproductive and somatic effort in social insects. These are the first measurements of JH in a solitary-nesting hymenopteran, and the first to compare eusocial and solitary nesting individuals of the same species.


Assuntos
Abelhas/metabolismo , Comportamento Animal/fisiologia , Hormônios Juvenis/metabolismo , Comportamento Social , Animais , Feminino , Masculino , Espectrometria de Massas , Predomínio Social
17.
Microbiome ; 11(1): 150, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452376

RESUMO

BACKGROUND: Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama's tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. RESULTS: We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the "socially associated" bacterial taxa, which unexpectedly demonstrated high sequence variation. CONCLUSIONS: Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Abelhas , Animais , Microbiota/genética , Comportamento Social , Microbioma Gastrointestinal/genética , Florestas
18.
Sci Rep ; 13(1): 22320, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102400

RESUMO

Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits of Megalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees' thermal limits. Megalopta displayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMin increased with increasing body size across all bees but decreased with increasing body size and ovary area in Megalopta, suggesting a reproductive cost or differences in thermal environments. CTMax did not increase with increasing body size or ovary area. These results indicate a greater sensitivity of Megalopta to temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.


Assuntos
Mudança Climática , Termotolerância , Feminino , Animais , Abelhas , Ecossistema , Polinização , Dessecação , Insetos
19.
Foods ; 12(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37835310

RESUMO

The parameters for assessing the quality of honey produced by Apis mellifera are standardized worldwide. The physicochemical properties of honey might vary extensively due to factors such as the geographical area where it was produced and the season in which it was harvested. Little information is available on variations in honey quality among different harvest periods in tropical areas, and particularly in neotropical dry forests. This study describes variations in seventeen physicochemical parameters and the pollen diversity of honey harvested from beehives during the dry season in February, March, and April 2021, in the dry arc of Panama. Potassium is the most abundant mineral in honey samples, and its concentration increases during the harvest period from February to April. A PCA analysis showed significant differences among the samples collected during different harvest periods. The pollen diversity also differs among honey samples from February compared with March and April. The results indicate that climatic conditions may play an important role in the quality of honey produced in the dry arc of Panama. Furthermore, these results might be useful for establishing quality-control parameters of bee honey produced in Panama in support of beekeeping activities in seasonal wet-dry areas of the tropics.

20.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941345

RESUMO

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Assuntos
Comportamento Social , Suor , Abelhas , Animais , Reprodução , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa