Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 13: 694, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23231440

RESUMO

BACKGROUND: Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. RESULTS: Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs) in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen's annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100-150 amino acids), with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300-400 amino acids), with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. CONCLUSIONS: We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f.sp. hordei. Based on relative intron position and the distribution of CSEPs with a ribonuclease-like domain in the phylogenetic tree we hypothesize that the associated genes originated from an ancestral gene, encoding a secreted ribonuclease, duplicated successively by repetitive DNA-driven processes and diversified during the evolution of the grass and cereal powdery mildew lineage.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Hordeum/microbiologia , Micoses/genética , Micoses/imunologia , Sequência de Aminoácidos , Grão Comestível/microbiologia , Hordeum/metabolismo , Interações Hospedeiro-Patógeno/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteômica , Alinhamento de Sequência
2.
Fungal Genet Biol ; 49(6): 470-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22521876

RESUMO

Powdery mildews are phytopathogenic ascomycetes that have an obligate biotrophic lifestyle and establish intimate relationships with their plant hosts. A crucial aspect of this plant-fungus interaction is the formation of specialized fungal infection structures termed haustoria. Although located within the cell boundaries of plant epidermal cells, haustoria remain separated from the plant cytoplasm by a host plasma membrane derivative, the extrahaustorial membrane. Haustoria are thought to represent pivotal sites of nutrient uptake and effector protein delivery. We enriched haustorial complexes from Arabidopsis thaliana plants infected with the powdery mildew fungus Golovinomyces orontii and performed in-depth transcriptome analysis by 454-based pyrosequencing of haustorial cDNAs. We assembled 7077 expressed sequence tag (EST) contigs with greater than 5-fold average coverage and analyzed these with regard to the respective predicted protein functions. We found that transcripts coding for gene products with roles in protein turnover, detoxification of reactive oxygen species and fungal pathogenesis are abundant in the haustorial EST contigs, while surprisingly transcripts encoding presumptive nutrient transporters were not highly represented in the haustorial cDNA library. A substantial proportion (∼38%) of transcripts coding for predicted secreted proteins comprises effector candidates. Our data provide valuable insights into the transcriptome of the key infection structure of a model obligate biotrophic phytopathogen.


Assuntos
Ascomicetos/genética , Transcriptoma , Arabidopsis/microbiologia , Ascomicetos/isolamento & purificação , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Doenças das Plantas/microbiologia
3.
Cell Host Microbe ; 16(3): 364-75, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211078

RESUMO

While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this data set with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intraspecies and interspecies convergence and several altered immune response phenotypes. Several effectors and the most heavily targeted host protein colocalized in subnuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ascomicetos/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Biológica , Proteínas Fúngicas/metabolismo , Oomicetos/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Ascomicetos/genética , Proteínas de Bactérias/genética , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Oomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Pseudomonas syringae/genética
4.
Plant Methods ; 8(1): 35, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22937820

RESUMO

BACKGROUND: The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. RESULTS: Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. CONCLUSIONS: The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa