Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nature ; 629(8013): 810-818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778234

RESUMO

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Assuntos
Velocidade do Fluxo Sanguíneo , Encéfalo , Circulação Cerebrovascular , Ultrassonografia , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Erros Médicos , Razão Sinal-Ruído , Pele , Crânio , Sonolência/fisiologia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Adulto
2.
Radiology ; 305(3): 526-537, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36255312

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is believed to affect one-third of American adults. Noninvasive methods that enable detection and monitoring of NAFLD have the potential for great public health benefits. Because of its low cost, portability, and noninvasiveness, US is an attractive alternative to both biopsy and MRI in the assessment of liver steatosis. NAFLD is qualitatively associated with enhanced B-mode US echogenicity, but visual measures of B-mode echogenicity are negatively affected by interobserver variability. Alternatively, quantitative backscatter parameters, including the hepatorenal index and backscatter coefficient, are being investigated with the goal of improving US-based characterization of NAFLD. The American Institute of Ultrasound in Medicine and Radiological Society of North America Quantitative Imaging Biomarkers Alliance are working to standardize US acquisition protocols and data analysis methods to improve the diagnostic performance of the backscatter coefficient in liver fat assessment. This review article explains the science and clinical evidence underlying backscatter for liver fat assessment. Recommendations for data collection are discussed, with the aim of minimizing potential confounding effects associated with technical and biologic variables.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos , Fígado/diagnóstico por imagem , Fígado/patologia , Ultrassonografia/métodos , Imageamento por Ressonância Magnética
3.
Radiology ; 305(2): 265-276, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098640

RESUMO

Excessive liver fat (steatosis) is now the most common cause of chronic liver disease worldwide and is an independent risk factor for cirrhosis and associated complications. Accurate and clinically useful diagnosis, risk stratification, prognostication, and therapy monitoring require accurate and reliable biomarker measurement at acceptable cost. This article describes a joint effort by the American Institute of Ultrasound in Medicine (AIUM) and the RSNA Quantitative Imaging Biomarkers Alliance (QIBA) to develop standards for clinical and technical validation of quantitative biomarkers for liver steatosis. The AIUM Liver Fat Quantification Task Force provides clinical guidance, while the RSNA QIBA Pulse-Echo Quantitative Ultrasound Biomarker Committee develops methods to measure biomarkers and reduce biomarker variability. In this article, the authors present the clinical need for quantitative imaging biomarkers of liver steatosis, review the current state of various imaging modalities, and describe the technical state of the art for three key liver steatosis pulse-echo quantitative US biomarkers: attenuation coefficient, backscatter coefficient, and speed of sound. Lastly, a perspective on current challenges and recommendations for clinical translation for each biomarker is offered.


Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado Gorduroso/diagnóstico por imagem , Fígado/diagnóstico por imagem , Ultrassonografia/métodos , Biomarcadores , Padrões de Referência , Imageamento por Ressonância Magnética
4.
J Ultrasound Med ; 34(7): 1-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26112617

RESUMO

The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues.


Assuntos
Acústica , Modelos Teóricos , Guias de Prática Clínica como Assunto , Pressão , Ultrassonografia/normas , Animais , Segurança de Equipamentos , Humanos , Estados Unidos , United States Food and Drug Administration
5.
J Acoust Soc Am ; 137(3): 1126-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25786928

RESUMO

Through-transmission measurements were performed on 30 human calcaneus samples in vitro. Nonlinear attenuation and dispersion measurements were investigated by estimating 95% confidence intervals of coefficients of polynomial expansions of log magnitude and phase of transmission coefficients. Bone mineral density (BMD) was measured with dual x-ray absorptiometry. Microarchitecture was measured with microcomputed tomography. Statistically significant nonlinear attenuation and nonzero dispersion were confirmed for a clinical bandwidth of 300-750 kHz in 40%-43% of bone samples. The mean linear coefficient for attenuation was 10.3 dB/cm MHz [95% confidence interval (CI): 9.0-11.6 dB/cm MHz]. The mean quadratic coefficient for attenuation was 1.6 dB/cm MHz(2) (95% CI: 0.4-2.8 dB/cm MHz(2)). Nonlinear attenuation provided little information regarding BMD or microarchitecture. The quadratic coefficient for phase (which is related to dispersion) showed moderate correlations with BMD (r = -0.65; 95% CI: -0.82 to -0.36), bone surface-to-volume ratio (r = 0.47; 95% CI: 0.12-0.72) and trabecular thickness (r = -0.40; 95% CI: -0.67 to -0.03). Dispersion was proportional to bone volume fraction raised to an exponent of 2.1 ± 0.2, which is similar to the value for parallel nylon-wire phantoms (2.4 ± 0.2) and supports a multiple-scattering model for dispersion.


Assuntos
Densidade Óssea , Calcâneo/diagnóstico por imagem , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Absorciometria de Fóton , Humanos , Movimento (Física) , Dinâmica não Linear , Imagens de Fantasmas , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Espalhamento de Radiação , Som , Fatores de Tempo , Ultrassonografia/instrumentação , Microtomografia por Raio-X
6.
J Acoust Soc Am ; 138(2): 594-604, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26328678

RESUMO

Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable.


Assuntos
Teorema de Bayes , Condução Óssea/fisiologia , Cavalos/fisiologia , Análise dos Mínimos Quadrados , Acústica , Algoritmos , Animais , Cavalos/anatomia & histologia , Porosidade , Ondas de Rádio , Rádio (Anatomia)/ultraestrutura , Som , Ultrassom
7.
J Acoust Soc Am ; 135(4): 2102-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25235007

RESUMO

In through-transmission interrogation of cancellous bone, two longitudinal pulses ("fast" and "slow" waves) may be generated. Fast and slow wave properties convey information about material and micro-architectural characteristics of bone. However, these properties can be difficult to assess when fast and slow wave pulses overlap in time and frequency domains. In this paper, two methods are applied to decompose signals into fast and slow waves: bandlimited deconvolution and modified least-squares Prony's method with curve-fitting (MLSP + CF). The methods were tested in plastic and Zerdine(®) samples that provided fast and slow wave velocities commensurate with velocities for cancellous bone. Phase velocity estimates were accurate to within 6 m/s (0.4%) (slow wave with both methods and fast wave with MLSP + CF) and 26 m/s (1.2%) (fast wave with bandlimited deconvolution). Midband signal loss estimates were accurate to within 0.2 dB (1.7%) (fast wave with both methods), and 1.0 dB (3.7%) (slow wave with both methods). Similar accuracies were found for simulations based on fast and slow wave parameter values published for cancellous bone. These methods provide sufficient accuracy and precision for many applications in cancellous bone such that experimental error is likely to be a greater limiting factor than estimation error.


Assuntos
Osso e Ossos/diagnóstico por imagem , Simulação por Computador , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Ultrassonografia/instrumentação , Movimento (Física) , Som , Fatores de Tempo
8.
J Acoust Soc Am ; 133(4): 2490-501, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23556613

RESUMO

The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.


Assuntos
Densidade Óssea , Calcâneo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Ultrassom/métodos , Algoritmos , Animais , Bovinos , Simulação por Computador , Elasticidade , Humanos , Análise dos Mínimos Quadrados , Modelos Biológicos , Análise Numérica Assistida por Computador , Porosidade , Razão Sinal-Ruído , Fatores de Tempo , Ultrassonografia
9.
Artigo em Inglês | MEDLINE | ID: mdl-36178990

RESUMO

Frequency-dependent effective sensitive element radius [Formula: see text] is a key parameter for elucidating physical mechanisms of hydrophone operation. In addition, it is essential to know [Formula: see text] to correct for hydrophone output voltage reduction due to spatial averaging across the hydrophone sensitive element surface. At low frequencies, [Formula: see text] is greater than geometrical sensitive element radius ag . Consequently, at low frequencies, investigators can overrate their hydrophone spatial resolution. Empirical models for [Formula: see text] for membrane, needle, and fiber-optic hydrophones have been obtained previously. In this article, an empirical model for [Formula: see text] for capsule hydrophones is presented, so that models are now available for the four most common hydrophone types used in biomedical ultrasound. The [Formula: see text] value was estimated from directivity measurements (over the range from 1 to 20 MHz) for five capsule hydrophones (three with [Formula: see text] and two with [Formula: see text]). The results suggest that capsule hydrophones behave according to a "rigid piston" model for k a g ≥ 0.7 ( k = 2π /wavelength). Comparing the four hydrophone types, the low-frequency discrepancy between [Formula: see text] and ag was found to be greatest for membrane hydrophones, followed by capsule hydrophones, and smallest for needle and fiber-optic hydrophones. Empirical models for [Formula: see text] are helpful for choosing an appropriate hydrophone for an experiment and for correcting for spatial averaging (over the sensitive element surface) in pressure and beamwidth measurements. When reporting hydrophone-based pressure measurements, investigators should specify [Formula: see text] at the center frequency (which may be estimated from the models presented here) in addition to ag .

10.
Biomed Opt Express ; 14(11): 5735-5748, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021140

RESUMO

Recent reports have raised concerns of potential racial disparities in performance of optical oximetry technologies. To investigate how variable epidermal melanin content affects performance of photoacoustic imaging (PAI) devices, we developed plastisol phantoms combining swappable skin-mimicking layers with a breast phantom containing either India ink or blood adjusted to 50-100% SO2 using sodium dithionite. Increasing skin pigmentation decreased maximum imaging depth by up to 25%, enhanced image clutter, and increased root-mean-square error in SO2 from 8.0 to 17.6% due to signal attenuation and spectral coloring effects. This phantom tool can aid in evaluating PAI device robustness to ensure high performance in all patients.

11.
Comput Methods Biomech Biomed Engin ; 26(5): 508-516, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35579530

RESUMO

MicroCT-based finite element models were used to compute power law relations for uniaxial compressive yield stress versus bone volume fraction for 78 cores of human trabecular bone from five anatomic sites. The leading coefficient of the power law for calcaneus differed from those for most of the other sites (p < 0.05). However, after normalizing by site-specific mean values, neither the leading coefficient (p > 0.5) nor exponent (p > 0.5) differed among sites, suggesting that a given percentage deviation from mean bone volume fraction has the same mechanical consequence for all sites investigated. These findings help explain the success of calcaneal x-ray and ultrasound measurements for predicting hip fracture risk.


Assuntos
Calcâneo , Fraturas do Quadril , Humanos , Colo do Fêmur/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Calcâneo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Coluna Vertebral , Densidade Óssea
12.
Artigo em Inglês | MEDLINE | ID: mdl-36215339

RESUMO

This article presents basic principles of hydrophone measurements, including mechanisms of action for various hydrophone designs, sensitivity and directivity calibration procedures, practical considerations for performing measurements, signal processing methods to correct for both frequency-dependent sensitivity and spatial averaging across the hydrophone sensitive element, uncertainty in hydrophone measurements, special considerations for high-intensity therapeutic ultrasound, and advice for choosing an appropriate hydrophone for a particular measurement task. Recommendations are made for information to be included in hydrophone measurement reporting.


Assuntos
Terapia por Ultrassom , Ultrassonografia/métodos , Calibragem , Processamento de Sinais Assistido por Computador
13.
J Acoust Soc Am ; 131(2): 1605-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22352530

RESUMO

Ultrasound parameters (attenuation, phase velocity, and backscatter), bone mineral density (BMD), and microarchitectural features were measured on 29 human cancellous calcaneus samples in vitro. Regression analysis was performed to predict ultrasound parameters from BMD and microarchitectural features. The best univariate predictors of the ultrasound parameters were the indexes of bone quantity: BMD and bone volume fraction (BV/TV). The most predictive univariate models for attenuation, phase velocity, and backscatter coefficient yielded adjusted squared correlation coefficients of 0.69-0.73. Multiple regression models yielded adjusted correlation coefficients of 0.74-0.83. Therefore attenuation, phase velocity, and backscatter are primarily determined by bone quantity, but multiple regression models based on bone quantity plus microarchitectural features achieve slightly better predictive performance than models based on bone quantity alone.


Assuntos
Densidade Óssea/fisiologia , Calcâneo/fisiologia , Calcâneo/anatomia & histologia , Calcâneo/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Análise de Regressão , Tomografia Computadorizada por Raios X , Ultrassonografia
14.
Artigo em Inglês | MEDLINE | ID: mdl-35133964

RESUMO

This article reports spatiotemporal deconvolution methods and simple empirical formulas to correct pressure and beamwidth measurements for spatial averaging across a hydrophone sensitive element. Readers who are uninterested in hydrophone theory may proceed directly to Appendix A for an easy method to estimate spatial-averaging correction factors. Hydrophones were modeled as angular spectrum filters. Simulations modeled nine circular transducers (1-10 MHz; F/1.4-F/3.2) driven at six power levels and measured with eight hydrophones (432 beam/hydrophone combinations). For example, the model predicts that if a 200- [Formula: see text] membrane hydrophone measures a moderately nonlinear 5-MHz beam from an F/1 transducer, spatial-averaging correction factors are 33% (peak compressional pressure or pc ), 18% (peak rarefactional pressure or p ), and 18% (full width half maximum or FWHM). Theoretical and experimental estimates of spatial-averaging correction factors to were in good agreement (within 5%) for linear and moderately nonlinear signals. Criteria for maximum appropriate hydrophone sensitive element size as functions of experimental parameters were derived. Unlike the oft-cited International Electrotechnical Commission (IEC) criterion, the new criteria were derived for focusing rather than planar transducers and can accommodate nonlinear signals in addition to linear signals. Responsible reporting of hydrophone-based pressure and beamwidth measurements should always acknowledge spatial-averaging considerations.


Assuntos
Acústica , Transdutores , Pressão
15.
Artigo em Inglês | MEDLINE | ID: mdl-35143394

RESUMO

This article reports experimental validation for spatiotemporal deconvolution methods and simple empirical formulas to correct pressure and beamwidth measurements for spatial averaging across a hydrophone sensitive element. The method was validated using linear and nonlinear beams transmitted by seven single-element spherically focusing transducers (2-10 MHz; F /#: 1-3) and measured with five hydrophones (sensitive element diameters dg : 85-1000 [Formula: see text]), resulting in 35 transducer/hydrophone combinations. Exponential functions, exp( -αx ), where x = dg /( λ1F /#) and λ1 is the fundamental wavelength, were used to model focal pressure ratios p'/p (where p' is the measured value subjected to spatial averaging and p is the true axial value that would be obtained with a hypothetical point hydrophone). Spatiotemporal deconvolution reduced α (followed by root mean squared difference between data and fit) from 0.29-0.30 (7%) to 0.01 (8%) (linear signals) and from 0.29-0.40 (8%) to 0.04 (14%) (nonlinear signals), indicating successful spatial averaging correction. Linear functions, Cx + 1, were used to model FWHM'/FWHM, where FWHM is full-width half-maximum. Spatiotemporal deconvolution reduced C from 9% (4%) to -0.6% (1%) (linear signals) and from 30% (10%) to 6% (5%) (nonlinear signals), indicating successful spatial averaging correction. Spatiotemporal deconvolution resulted in significant improvement in accuracy even when the hydrophone geometrical sensitive element diameter exceeded the beam FWHM. Responsible reporting of hydrophone-based pressure measurements should always acknowledge spatial averaging considerations.


Assuntos
Acústica , Transdutores
16.
Photoacoustics ; 26: 100348, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35360521

RESUMO

Standardized phantoms and test methods are needed to accelerate clinical translation of emerging photoacoustic imaging (PAI) devices. Evaluating object detectability in PAI is challenging due to variations in target morphology and artifacts including boundary buildup. Here we introduce breast fat and parenchyma tissue-mimicking materials based on emulsions of silicone oil and ethylene glycol in polyacrylamide hydrogel. 3D-printed molds were used to fabricate solid target inclusions that produced more filled-in appearance than traditional PAI phantoms. Phantoms were used to assess understudied image quality characteristics (IQCs) of three PAI systems. Object detectability was characterized vs. target diameter, absorption coefficient, and depth. Boundary buildup was quantified by target core/boundary ratio, which was higher in transducers with lower center frequency. Target diameter measurement accuracy was also size-dependent and improved with increasing transducer frequency. These phantoms enable evaluation of multiple key IQCs and may support development of comprehensive standardized test methods for PAI devices.

17.
Biomed Opt Express ; 13(3): 1357-1373, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35415004

RESUMO

Phantom-based performance test methods are critically needed to support development and clinical translation of emerging photoacoustic microscopy (PAM) devices. While phantoms have been recently developed for macroscopic photoacoustic imaging systems, there is an unmet need for well-characterized tissue-mimicking materials (TMMs) and phantoms suitable for evaluating PAM systems. Our objective was to develop and characterize a suitable dermis-mimicking TMM based on polyacrylamide hydrogels and demonstrate its utility for constructing image quality phantoms. TMM formulations were optically characterized over 400-1100 nm using integrating sphere spectrophotometry and acoustically characterized using a pulse through-transmission method over 8-24 MHz with highly confident extrapolation throughout the usable band of the PAM system. This TMM was used to construct a spatial resolution phantom containing gold nanoparticle point targets and a penetration depth phantom containing slanted tungsten filaments and blood-filled tubes. These phantoms were used to characterize performance of a custom-built PAM system. The TMM was found to be broadly tunable and specific formulations were identified to mimic human dermis at an optical wavelength of 570 nm and acoustic frequencies of 10-50 MHz. Imaging results showed that tungsten filaments yielded 1.1-4.2 times greater apparent maximum imaging depth than blood-filled tubes, which may overestimate real-world performance for vascular imaging applications. Nanoparticles were detectable only to depths of 120-200 µm, which may be due to the relatively weaker absorption of single nanoparticles vs. larger targets containing high concentration of hemoglobin. The developed TMMs and phantoms are useful tools to support PAM device characterization and optimization, streamline regulatory decision-making, and accelerate clinical translation.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33186102

RESUMO

This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t 43 ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t 43 ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t 43 ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t 43 , and [Formula: see text] for ARFI and pulsed Doppler signals.


Assuntos
Acústica , Transdutores , Ultrassonografia
19.
Artigo em Inglês | MEDLINE | ID: mdl-33186104

RESUMO

Two scientists from the U.S. Food and Drug Administration comment on limitations of acoustic safety indexes that can arise from spatial averaging effects of hydrophones that are used to measure acoustic output.


Assuntos
Médicos , Transdutores , Acústica , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-33186103

RESUMO

This article reports the experimental validation of a method for correcting underestimates of peak compressional pressure ( pc) , peak rarefactional pressure ( pr) , and pulse intensity integral (pii) due to hydrophone spatial averaging effects that occur during output measurement of clinical linear and phased arrays. Pressure parameters ( pc , pr , and pii), which are used to compute acoustic exposure safety indexes, such as mechanical index (MI) and thermal index (TI), are often not corrected for spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. In a companion article (Part I), a novel, analytic, inverse-filter method was derived to correct for spatial averaging for linear or nonlinear pressure waves from linear and phased arrays. In the present article (Part II), the inverse filter is validated on measurements of acoustic radiation force impulse (ARFI) and pulsed Doppler waveforms. Empirical formulas are provided to enable researchers to predict and correct hydrophone spatial averaging errors for membrane-hydrophone-based acoustic output measurements. For example, for a 400- [Formula: see text] membrane hydrophone, inverse filtering reduced errors (means ± standard errors for 15 linear array/hydrophone pairs) from about 34% ( pc) , 22% ( pr) , and 45% (pii) down to within 5% for all three parameters. Inverse filtering for spatial averaging effects significantly improves the accuracy of estimates of acoustic pressure parameters for ARFI and pulsed Doppler signals.


Assuntos
Acústica , Transdutores , Ultrassonografia Doppler de Pulso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa