Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Int J Rob Res ; 43(1): 53-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38524963

RESUMO

Understanding elastic instability has been a recent focus of concentric tube robot research. Modeling advances have enabled prediction of when instabilities will occur and produced metrics for the stability of the robot during use. In this paper, we show how these metrics can be used to resolve redundancy to avoid elastic instability, opening the door for the practical use of higher curvature designs than have previously been possible. We demonstrate the effectiveness of the approach using a three-tube robot that is stabilized by redundancy resolution when following trajectories that would otherwise result in elastic instabilities. We also show that it is stabilized when teleoperated in ways that otherwise produce elastic instabilities. Lastly, we show that the redundancy resolution framework presented here can be applied to other control objectives useful for surgical robots, such as maximizing or minimizing compliance in desired directions.

2.
World J Urol ; 40(3): 671-677, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34132897

RESUMO

Image-guidance during partial nephrectomy enables navigation within the operative field alongside a 3-dimensional roadmap of renal anatomy generated from patient-specific imaging. Once a process is performed by the human mind, the technology will allow standardization of the task for the benefit of all patients undergoing robot-assisted partial nephrectomy. Any surgeon will be able to visualize the kidney and key subsurface landmarks in real-time within a 3-dimensional simulation, with the goals of improving operative efficiency, decreasing surgical complications, and improving oncologic outcomes. For similar purposes, image-guidance has already been adopted as a standard of care in other surgical fields; we are now at the brink of this in urology. This review summarizes touch-based approaches to image-guidance during partial nephrectomy, as the technology begins to enter in vivo human evaluation. The processes of segmentation, localization, registration, and re-registration are all described with seamless integration into the da Vinci surgical system; this will facilitate clinical adoption sooner.


Assuntos
Neoplasias Renais , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Rim/cirurgia , Neoplasias Renais/cirurgia , Nefrectomia/métodos , Tato
3.
Int J Rob Res ; 40(6-7): 923-938, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334877

RESUMO

Continuum manipulators, inspired by nature, have drawn significant interest within the robotics community. They can facilitate motion within complex environments where traditional rigid robots may be ineffective, while maintaining a reasonable degree of precision. Soft continuum manipulators have emerged as a growing subfield of continuum robotics, with promise for applications requiring high compliance, including certain medical procedures. This has driven demand for new control schemes designed to precisely control these highly flexible manipulators, whose kinematics may be sensitive to external loads, such as gravity. This article presents one such approach, utilizing a rapidly computed kinematic model based on Cosserat rod theory, coupled with sensor feedback to facilitate closed-loop control, for a soft continuum manipulator under tip follower actuation and external loading. This approach is suited to soft manipulators undergoing quasi-static deployment, where actuators apply a follower wrench (i.e., one that is in a constant body frame direction regardless of robot configuration) anywhere along the continuum structure, as can be done in water-jet propulsion. In this article we apply the framework specifically to a tip actuated soft continuum manipulator. The proposed control scheme employs both actuator feedback and pose feedback. The actuator feedback is utilized to both regulate the follower load and to compensate for non-linearities of the actuation system that can introduce kinematic model error. Pose feedback is required to maintain accurate path following. Experimental results demonstrate successful path following with the closed-loop control scheme, with significant performance improvements gained through the use of sensor feedback when compared with the open-loop case.

4.
J Minim Invasive Gynecol ; 27(7): 1631-1635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32540499

RESUMO

To trial the use of a novel endoscopic robot that functions using concentric tube robots, enabling 2-handed surgery in small spaces, in a bioengineering laboratory. This was a feasibility study of the endoscopic robot for hysteroscopic applications, including removal of a simulated endometrial polyp. The endoscopic robot was successfully used to resect a simulated endometrial polyp from a porcine uterine tissue model in a fluid environment. The potential advantages of this platform to the surgeon may include improved exposure, finer dissection capability, and use of a 2-handed surgical technique. Further study regarding the safe, efficient, and cost-effective use of the endoscopic robot in gynecology is needed.


Assuntos
Endoscopia/instrumentação , Histeroscopia/instrumentação , Invenções , Procedimentos Cirúrgicos Robóticos/instrumentação , Robótica/instrumentação , Animais , Remoção de Dispositivo/instrumentação , Remoção de Dispositivo/métodos , Endoscopia/métodos , Estudos de Viabilidade , Feminino , Ginatresia/cirurgia , Humanos , Histeroscopia/métodos , Dispositivos Intrauterinos , Modelos Animais , Pólipos/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Robótica/métodos , Suínos , Doenças Uterinas/cirurgia
5.
IEEE Trans Robot ; 36(6): 1704-1718, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603591

RESUMO

Existing static and kinematic models of concentric tube robots are based on the ordinary differential equations of a static Cosserat rod. In this paper, we provide the first dynamic model for concentric tube continuum robots by adapting the partial differential equations of a dynamic Cosserat rod to describe the coupled inertial dynamics of precurved concentric tubes. This generates an initial-boundary-value problem that can capture robot vibrations over time. We solve this model numerically at high time resolutions using implicit finite differences in time and arc length. This approach is capable of resolving the high-frequency torsional dynamics that occur during unstable "snapping" motions and provides a simulation tool that can track the true robot configuration through such transitions. Further, it can track slower oscillations associated with bending and torsion as a robot interacts with tissue at real-time speeds. Experimental verification of the model shows that this wide range of effects is captured efficiently and accurately.

6.
IEEE ASME Trans Mechatron ; 25(3): 1432-1443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33746503

RESUMO

Open surgical approaches are still often employed in neurosurgery, despite the availability of neuroendoscopic approaches that reduce invasiveness. The challenge of maneuvering instruments at the tip of the endoscope makes neuroendoscopy demanding for the physician. The only way to aim tools passed through endoscope ports is to tilt the entire endoscope; but, tilting compresses brain tissue through which the endoscope passes and can damage it. Concentric tube robots can provide necessary dexterity without endoscope tilting, while passing through existing ports in the endoscope and carrying surgical tools in their inner lumen. In this paper we describe the mechatronic design of a new concentric tube robot that can deploy two concentric tube manipulators through a standard neuroendoscope. The robot uses a compact differential drive and features embedded motor control electronics and redundant position sensors for safety. In addition to the mechatronic design of this system, this paper contributes experimental validation in the context of colloid cyst removal, comparing our new robotic system to standard manual endoscopy in a brain phantom. The robotic approach essentially eliminated endoscope tilt during the procedure (17.09° for the manual approach vs. 1.16° for the robotic system). The robotic system also enables a single surgeon to perform the procedure - typically in a manual approach one surgeon aims the endoscope and another operates the tools delivered through its ports.

7.
IEEE Trans Robot ; 33(1): 227-233, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29230134

RESUMO

Magnet-tipped, elastic rods can be steered by an external magnetic field to perform surgical tasks. Such rods could be useful for a range of new medical applications because they do not require either pull wires or other bulky mechanisms that are problematic in small anatomical regions. However, current magnetic rod steering systems are large and expensive. Here, we describe a method to guide a rod using a robot-manipulated magnet located near a patient. We solve for rod deflections by combining permanent-magnet models with a Kirchhoff elastic rod model and use a resolved-rate approach to compute trajectories. Experiments show that three-dimensional trajectories can be executed accurately without feedback and that the system's redundancy can be exploited to avoid obstacles.

8.
IEEE ASME Trans Mechatron ; 22(6): 2780-2789, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31105420

RESUMO

Magnetic Resonance (MR) guided interventional robots have recently been developed for a variety of surgeries, such as biopsy, ablation, and brachytherapy. The actuators and encoders that power and track such robots must be MR-conditional. In this paper, we propose an MR-conditional pneumatic motor with an integrated and custom-built fiber-optical encoder that provides powerful and accurate actuation. The motor is coupled with a modular plastic gearbox that provides a variety of gear ratio options so that the motor can be adapted to application requirements. With a 100:1 gear reduction at 0.55 MPa, the motor achieves 460 mNm stall torque and 370 rpm no-load speed, which leads to the peak output power of 6W. The motor has the bandwidth of approximately 1.1 Hz and 3.5 Hz when connected to 8 m and 0.2 m air hoses, respectively. The motor was tested in a 3T MRI scanner. No image artifact was observed and maximum signal to noise ratio (SNR) variation was less than 5%. Different from most of the existing MR-conditional pneumatic actuators, the proposed motor shape is more like the traditional electric motors, which offers more flexibility in the MR-conditional robot design.

9.
IEEE Trans Robot ; 32(1): 20-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27042170

RESUMO

Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.

10.
IEEE Trans Robot ; 31(2): 246-258, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26622208

RESUMO

Concentric tube robots can enable new clinical interventions if they are able to pass through soft tissue, deploy along desired paths through open cavities, or travel along winding lumens. These behaviors require the robot to deploy in such a way that the curved shape of its shaft remains unchanged as the tip progresses forward (i.e., "follow-the-leader" deployment). Follow-the-leader deployment is challenging for concentric tube robots due to elastic (and particularly torsional) coupling between the tubes that form the robot. However, as we show in this paper, follow-the-leader deployment is possible, provided that tube precurvatures and deployment sequences are appropriately selected. We begin by defining follow-the-leader deployment and providing conditions that must be satisfied for a concentric tube robot to achieve it. We then examine several useful special cases of follow-the-leader deployment, showing that both circular and helical precurvatures can be employed, and provide an experimental illustration of the helical case. We also explore approximate follow-the-leader behavior and provide a metric for the similarity of a general deployment to a follow-the-leader deployment. Finally, we consider access to the hippocampus in the brain to treat epilepsy, as a motivating clinical example for follow-the-leader deployment.

11.
Int J Rob Res ; 34(13): 1559-1572, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27570361

RESUMO

Natural orifice endoscopic surgery can enable incisionless approaches, but a major challenge is the lack of small and dexterous instrumentation. Surgical robots have the potential to meet this need yet often disrupt the clinical workflow. Hand-held robots that combine thin manipulators and endoscopes have the potential to address this by integrating seamlessly into the clinical workflow and enhancing dexterity. As a case study illustrating the potential of this approach, we describe a hand-held robotic system that passes two concentric tube manipulators through a 5 mm port in a rigid endoscope for transurethral laser prostate surgery. This system is intended to catalyze the use of a clinically superior, yet rarely attempted, procedure for benign prostatic hyperplasia. This paper describes system design and experiments to evaluate the surgeon's functional workspace and accuracy using the robot. Phantom and cadaver experiments demonstrate successful completion of the target procedure via prostate lobe resection.

12.
IEEE Trans Robot ; 30(4): 853-864, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25435829

RESUMO

Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm.

13.
Int J Med Robot ; 20(1): e2609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38536718

RESUMO

BACKGROUND: Cochlear-implant electrode arrays (EAs) are currently inserted with limited feedback, and impedance sensing has recently shown promise for EA localisation. METHODS: We investigate the use of impedance sensing to infer the progression of an EA during insertion. RESULTS: We show that the access resistance component of bipolar impedance sensing can detect when a straight EA reaches key anatomical locations in a plastic cochlea and when each electrode contact enters/exits the cochlea. We also demonstrate that dual-sided electrode contacts can provide useful proximity information and show the real-time relationship between impedance and wall proximity in a cadaveric cochlea for the first time. CONCLUSION: The access resistance component of bipolar impedance sensing has high potential for estimating positioning information of EAs relative to anatomy during insertion. Main limitations of this work include using saline as a surrogate for human perilymph in ex vivo models and using only one type of EA.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Impedância Elétrica , Cóclea/cirurgia , Eletrodos Implantados
14.
J Endourol ; 38(4): 395-407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251637

RESUMO

Introduction: Three-dimensional image-guided surgical (3D-IGS) systems for minimally invasive partial nephrectomy (MIPN) can potentially improve the efficiency and accuracy of intraoperative anatomical localization and tumor resection. This review seeks to analyze the current state of research regarding 3D-IGS, including the evaluation of clinical outcomes, system functionality, and qualitative insights regarding 3D-IGS's impact on surgical procedures. Methods: We have systematically reviewed the clinical literature pertaining to 3D-IGS deployed for MIPN. For inclusion, studies must produce a patient-specific 3D anatomical model from two-dimensional imaging. Data extracted from the studies include clinical results, registration (alignment of the 3D model to the surgical scene) method used, limitations, and data types reported. A subset of studies was qualitatively analyzed through an inductive coding approach to identify major themes and subthemes across the studies. Results: Twenty-five studies were included in the review. Eight (32%) studies reported clinical results that point to 3D-IGS improving multiple surgical outcomes. Manual registration was the most utilized (48%). Soft tissue deformation was the most cited limitation among the included studies. Many studies reported qualitative statements regarding surgeon accuracy improvement, but quantitative surgeon accuracy data were not reported. During the qualitative analysis, six major themes emerged across the nine applicable studies. They are as follows: 3D-IGS is necessary, 3D-IGS improved surgical outcomes, researcher/surgeon confidence in 3D-IGS system, enhanced surgeon ability/accuracy, anatomical explanation for qualitative assessment, and claims without data or reference to support. Conclusions: Currently, clinical outcomes are the main source of quantitative data available to point to 3D-IGS's efficacy. However, the literature qualitatively suggests the benefit of accurate 3D-IGS for robotic partial nephrectomy.


Assuntos
Robótica , Cirurgia Assistida por Computador , Humanos , Imageamento Tridimensional/métodos , Nefrectomia/métodos , Cirurgia Assistida por Computador/métodos
15.
IEEE Open J Eng Med Biol ; 5: 133-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487093

RESUMO

Goal: We present a new framework for in vivo image guidance evaluation and provide a case study on robotic partial nephrectomy. Methods: This framework (called the "bystander protocol") involves two surgeons, one who solely performs the therapeutic process without image guidance, and another who solely periodically collects data to evaluate image guidance. This isolates the evaluation from the therapy, so that in-development image guidance systems can be tested without risk of negatively impacting the standard of care. We provide a case study applying this protocol in clinical cases during robotic partial nephrectomy surgery. Results: The bystander protocol was performed successfully in 6 patient cases. We find average lesion centroid localization error with our IGS system to be 6.5 mm in vivo compared to our prior result of 3.0 mm in phantoms. Conclusions: The bystander protocol is a safe, effective method for testing in-development image guidance systems in human subjects.

16.
Annu Rev Biomed Eng ; 14: 397-429, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655598

RESUMO

The gastrointestinal tract is home to some of the most deadly human diseases. Exacerbating the problem is the difficulty of accessing it for diagnosis or intervention and the concomitant patient discomfort. Flexible endoscopy has established itself as the method of choice and its diagnostic accuracy is high, but there remain technical limitations in modern scopes, and the procedure is poorly tolerated by patients, leading to low rates of compliance with screening guidelines. Although advancement in clinical endoscope design has been slow in recent years, a critical mass of enabling technologies is now paving the way for the next generation of gastrointestinal endoscopes. This review describes current endoscopes and provides an overview of innovative flexible scopes and wireless capsules that can enable painless endoscopy and/or enhanced diagnostic and therapeutic capabilities. We provide a perspective on the potential of these new technologies to address the limitations of current endoscopes in mass cancer screening and other contexts and thus to save many lives.


Assuntos
Endoscopia Gastrointestinal/métodos , Endoscopia Gastrointestinal/tendências , Neoplasias/diagnóstico , Animais , Engenharia Biomédica/métodos , Endoscopia por Cápsula/métodos , Colonoscopia/métodos , Detecção Precoce de Câncer , Endoscópios Gastrointestinais , Desenho de Equipamento , Gastroenterologia/métodos , Trato Gastrointestinal/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
17.
IEEE Trans Robot ; 29(5): 1289-1299, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25400527

RESUMO

Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation.

18.
IEEE ASME Trans Mechatron ; 19(3): 996-1006, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25089086

RESUMO

Mechanics-based models of concentric tube continuum robots have recently achieved a level of sophistication that makes it possible to begin to apply these robots to a variety of real-world clinical scenarios. Endonasal skull base surgery is one such application, where their small diameter and tentacle like dexterity are particularly advantageous. In this paper we provide the medical motivation for an endonasal surgical robot featuring concentric tube manipulators, and describe our model-based design and teleoperation methods, as well as a complete system incorporating image-guidance. Experimental demonstrations using a laparoscopic training task, a cadaver reachability study, and a phantom tumor resection experiment illustrate that both novice and expert users can effectively teleoperate the system, and that skull base surgeons can use the robot to achieve their objectives in a realistic surgical scenario.

19.
Robotica ; 41(5): 1590-1616, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37732333

RESUMO

Robots and inertial measurement units (IMUs) are typically calibrated independently. IMUs are placed in purpose-built, expensive automated test rigs. Robot poses are typically measured using highly accurate (and thus expensive) tracking systems. In this paper, we present a quick, easy, and inexpensive new approach to calibrate both simultaneously, simply by attaching the IMU anywhere on the robot's end effector and moving the robot continuously through space. Our approach provides a fast and inexpensive alternative to both robot and IMU calibration, without any external measurement systems. We accomplish this using continuous-time batch estimation, providing statistically optimal solutions. Under Gaussian assumptions, we show that this becomes a nonlinear least squares problem and analyze the structure of the associated Jacobian. Our methods are validated both numerically and experimentally and compared to standard individual robot and IMU calibration methods.

20.
Int J Comput Assist Radiol Surg ; 18(3): 413-421, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36331796

RESUMO

PURPOSE: During traditional insertion of cochlear implant (CI) electrode arrays (EAs), surgeons rely on limited tactile feedback and visualization of the EA entering the cochlea to control the insertion. One insertion approach for precurved EAs involves slightly overinserting the EA and then retracting it slightly to achieve closer hugging of the modiolus. In this work, we investigate whether electrical impedance sensing could be a valuable real-time feedback tool to advise this pullback technique. METHODS: Using a to-scale 3D-printed scala tympani model, a robotic insertion tool, and a custom impedance sensing system, we performed experiments to assess the bipolar insertion impedance profiles for a cochlear CI532/632 precurved EA. Four pairs of contacts from the 22 electrode contacts were chosen based on preliminary testing and monitored in real time to halt the robotic insertion once the closest modiolar position had been achieved but prior to when the angular insertion depth (AID) would be reduced. RESULTS: In this setting, the open-loop robotic insertion impedance profiles were very consistent between trials. The exit of each contact from the external stylet of this EA was clearly discernible on the impedance profile. In closed-loop experiments using the pullback technique, the average distance from the electrode contacts to the modiolus was reduced without greatly affecting the AID by using impedance feedback in real time to determine when to stop EA retraction. CONCLUSION: Impedance sensing, and specifically the access resistance component of impedance, could be a valuable real-time feedback tool in the operating room during CI EA insertion. Future work should more thoroughly analyze the effects of more realistic operating room conditions and inter-patient variability on this technique.


Assuntos
Implante Coclear , Implantes Cocleares , Procedimentos Cirúrgicos Robóticos , Humanos , Impedância Elétrica , Retroalimentação , Cóclea/cirurgia , Implante Coclear/métodos , Eletrodos Implantados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa