Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610399

RESUMO

The Internet of Things (IoT) is the underlying technology that has enabled connecting daily apparatus to the Internet and enjoying the facilities of smart services. IoT marketing is experiencing an impressive 16.7% growth rate and is a nearly USD 300.3 billion market. These eye-catching figures have made it an attractive playground for cybercriminals. IoT devices are built using resource-constrained architecture to offer compact sizes and competitive prices. As a result, integrating sophisticated cybersecurity features is beyond the scope of the computational capabilities of IoT. All of these have contributed to a surge in IoT intrusion. This paper presents an LSTM-based Intrusion Detection System (IDS) with a Dynamic Access Control (DAC) algorithm that not only detects but also defends against intrusion. This novel approach has achieved an impressive 97.16% validation accuracy. Unlike most of the IDSs, the model of the proposed IDS has been selected and optimized through mathematical analysis. Additionally, it boasts the ability to identify a wider range of threats (14 to be exact) compared to other IDS solutions, translating to enhanced security. Furthermore, it has been fine-tuned to strike a balance between accurately flagging threats and minimizing false alarms. Its impressive performance metrics (precision, recall, and F1 score all hovering around 97%) showcase the potential of this innovative IDS to elevate IoT security. The proposed IDS boasts an impressive detection rate, exceeding 98%. This high accuracy instills confidence in its reliability. Furthermore, its lightning-fast response time, averaging under 1.2 s, positions it among the fastest intrusion detection systems available.

2.
Comput Intell Neurosci ; 2022: 7190751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837216

RESUMO

The COVID-19 pandemic has threatened the lives of many people, especially the elderly and those with chronic illnesses, as well as threatening the global economy. In response to the pandemic, many medical centers, including dental facilities, have significantly reduced the treatment of patients by limiting clinical practice to exclusively urgent, nondeferred care. Dentists are more vulnerable to contracting COVID-19, due to the necessity of the dentist being close to the patient. One of the precautions that dentists take to avoid transmitting infections is to wear a mask and gloves. However, the basic condition for nontransmission of infection is to leave a safe distance between the patient and the dentist. This system can be implemented by using an Arduino microcontroller, which is designed as a preliminary device by a dentist to examine a patient's teeth so that a safe distance of three meters between the dentist and the patient can be maintained. The project is based on hardware and has been programmed through Arduino. The proposed system uses a small wired camera with a length of five meters that is connected to the dentist's mobile or laptop and is installed on a robotic arm. The dentist can control the movement of the arm in all directions using a joystick at a distance of three meters. The results showed the effectiveness of this system for leaving a safe distance between the patient and the dentist. In our future work, we will control the movement of the arm via Bluetooth, and we will use a wi-fi-based camera.


Assuntos
COVID-19 , Internet das Coisas , Idoso , Relações Dentista-Paciente , Humanos , Pandemias
3.
Comput Biol Med ; 151(Pt A): 106311, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410097

RESUMO

Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.


Assuntos
Aminoácidos , Peptídeos Antimicrobianos , Análise por Conglomerados , Bases de Dados Factuais
4.
J Healthc Eng ; 2021: 6624764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575018

RESUMO

In healthcare applications, deep learning is a highly valuable tool. It extracts features from raw data to save time and effort for health practitioners. A deep learning model is capable of learning and extracting the features from raw data by itself without any external intervention. On the other hand, shallow learning feature extraction techniques depend on user experience in selecting a powerful feature extraction algorithm. In this article, we proposed a multistage model that is based on the spectrogram of biosignal. The proposed model provides an appropriate representation of the input raw biosignal that boosts the accuracy of training and testing dataset. In the next stage, smaller datasets are augmented as larger data sets to enhance the accuracy of the classification for biosignal datasets. After that, the augmented dataset is represented in the TensorFlow that provides more services and functionalities, which give more flexibility. The proposed model was compared with different approaches. The results show that the proposed approach is better in terms of testing and training accuracy.


Assuntos
Aprendizado Profundo , Atenção à Saúde
5.
Curr Microbiol ; 57(4): 364-70, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18663526

RESUMO

A successful attempt was made to isolate linear alkylbenzene sulfonate (LAS)-degrading bacteria from soil irrigated with wastewater. The isolated bacteria were able to use LAS as sole carbon and energy source. Maximum growth rates on LAS reached only 0.27 h(-1). 16S-rRNA sequencing and fatty-acid analysis placed the bacteria in the genus Enterobacter cloacae. The growth curves of E. cloacae both in the presence of and the absence of LAS were monitored using measurements of optical density at 600 nm in two different media, nutrient broth and M9 minimal medium, and were modeled mathematically. Growth in NB fit the Riccati and Voltera models, indicating that LAS is not toxic to E. cloacae cells. However, growth of E. cloacae in LAS-containing MM fit the Riccati and Voltera models, whereas growth in LAS-free MM fit the Riccati model only. Furthermore, the kinetic data shown were modeled by Monod's, Andrew's, and Tessier's specific growth rate equations, coupled with the rate of consumption of different concentrations of LAS as sole carbon and energy source, and we determined that Andrew's model best fit these data adequately as a result of the cell-inhibitory effect.


Assuntos
Ácidos Alcanossulfônicos , Carbono/metabolismo , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Ácidos Alcanossulfônicos/química , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Biodegradação Ambiental , Meios de Cultura , Relação Dose-Resposta a Droga , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Cinética , Modelos Biológicos , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa