Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(6): 1244-1262.e34, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931247

RESUMO

In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.


Assuntos
Proteínas de Escherichia coli , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Ribossomos/metabolismo , Proteínas de Escherichia coli/genética
2.
Cell ; 151(5): 1055-67, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178124

RESUMO

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) guide Argonaute proteins to silence mRNA expression. Argonaute binding alters the properties of an RNA guide, creating functional domains. We show that the domains established by Argonaute-the anchor, seed, central, 3' supplementary, and tail regions-have distinct biochemical properties that explain the differences between how animal miRNAs and siRNAs bind their targets. Extensive complementarity between an siRNA and its target slows the rate at which fly Argonaute2 (Ago2) binds to and dissociates from the target. Highlighting its role in antiviral defense, fly Ago2 dissociates so slowly from extensively complementary target RNAs that essentially every fully paired target is cleaved. Conversely, mouse AGO2, which mainly mediates miRNA-directed repression, dissociates rapidly and with similar rates for fully paired and seed-matched targets. Our data narrow the range of biochemically reasonable models for how Argonaute-bound siRNAs and miRNAs find, bind, and regulate their targets.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Interferência de RNA , Animais , Proteínas Argonautas/química , Sequência de Bases , Proteínas de Drosophila/química , Camundongos , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Pequeno RNA não Traduzido
3.
Genome Res ; 24(4): 651-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24642861

RESUMO

In bilaterians, which comprise most of extant animals, microRNAs (miRNAs) regulate the majority of messenger RNAs (mRNAs) via base-pairing of a short sequence (the miRNA "seed") to the target, subsequently promoting translational inhibition and transcript instability. In plants, many miRNAs guide endonucleolytic cleavage of highly complementary targets. Because little is known about miRNA function in nonbilaterian animals, we investigated the repertoire and biological activity of miRNAs in the sea anemone Nematostella vectensis, a representative of Cnidaria, the sister phylum of Bilateria. Our work uncovers scores of novel miRNAs in Nematostella, increasing the total miRNA gene count to 87. Yet only a handful are conserved in corals and hydras, suggesting that microRNA gene turnover in Cnidaria greatly exceeds that of other metazoan groups. We further show that Nematostella miRNAs frequently direct the cleavage of their mRNA targets via nearly perfect complementarity. This mode of action resembles that of small interfering RNAs (siRNAs) and plant miRNAs. It appears to be common in Cnidaria, as several of the miRNA target sites are conserved among distantly related anemone species, and we also detected miRNA-directed cleavage in Hydra. Unlike in bilaterians, Nematostella miRNAs are commonly coexpressed with their target transcripts. In light of these findings, we propose that post-transcriptional regulation by miRNAs functions differently in Cnidaria and Bilateria. The similar, siRNA-like mode of action of miRNAs in Cnidaria and plants suggests that this may be an ancestral state.


Assuntos
Sequência Conservada/genética , Evolução Molecular , Regulação da Expressão Gênica , MicroRNAs/genética , Animais , Conformação de Ácido Nucleico , Plantas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , Anêmonas-do-Mar/genética
4.
Free Radic Res ; 37(10): 1123-30, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14703802

RESUMO

Ascorbate and several polyphenolic compounds have been reported to undergo oxidation in cell culture media to generate hydrogen peroxide (H2O2), but the mechanism underlying this has not been established. We therefore investigated the parameters affecting H2O2 production. H2O2 generation from ascorbate, gallic acid and other phenolic compounds in Dulbecco's Modified Eagles' Medium (DMEM) at 37 degrees C under 95% air - 5% CO2 was not significantly inhibited by high (5-10 mM) concentration of EGTA, o-phenanthroline or desferriox-amine, but partial inhibition by EDTA and diethylene-triaminepentaacetic acid (DTPA) was observed. Incubation of DMEM alone at 37 degrees C led to an upward drift of pH, even under an atmosphere of 95% air - 5% CO2. Prevention of this pH rise by increasing the concentration of N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] (Hepes) buffer lowered the levels of H2O2 generated by ascorbate and phenolic compounds, but there was still substantial H2O2 generated at pH 7.4. Mixtures of ascorbate and phenolic compounds led to less H2O2 generation than would be expected from the rates observed with ascorbate or phenolic compounds alone. Ascorbate prevented the loss of gallic acid incubated in DMEM. The role of metal ions and other constituents of the culture medium in promoting H2O2 generation is discussed.


Assuntos
Ácido Ascórbico/metabolismo , Peróxido de Hidrogênio , Catalase/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Quelantes/farmacologia , Meios de Cultura , Relação Dose-Resposta a Droga , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Ácido Gálico/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Íons , Ácido Pentético/farmacologia , Espectrofotometria Atômica , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa