Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Prev Pract ; 3(4): 100170, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34414369

RESUMO

BACKGROUND: As researchers race to understand the nature of COVID-19 transmission, healthcare institutions must treat COVID-19 patients while also safeguarding the health of staff and other patients. One aspect of this process involves mitigating aerosol transmission of the SARS-CoV2 virus. The U.S. Centers for Disease Control and Prevention (CDC) provides general guidance on airborne contaminant removal, but directly measuring aerosol clearance in clinical rooms provides empirical evidence to guide clinical procedure. AIM: We present a risk-assessment approach to empirically measuring and certifying the aerosol clearance time (ACT) in operating and procedure rooms to improve hospital efficiency while also mitigating the risk of nosocomial infection. METHODS: Rooms were clustered based on physical and procedural parameters. Sample rooms from each cluster were randomly selected and tested by challenging the room with aerosol and monitoring aerosolized particle concentration until 99.9% clearance was achieved. Data quality was analysed and aerosol clearance times for each cluster were determined. FINDINGS: Of the 521 operating and procedure rooms considered, 449 (86%) were issued a decrease in clearance time relative to CDC guidance, 32 (6%) had their clearance times increased, and 40 (8%) remained at guidance. The average clearance time change of all rooms assessed was a net reduction of 27.8%. CONCLUSION: The process described here balances the need for high-quality, repeatable data with the burden of testing in a functioning clinical setting. Implementation of this approach resulted in a reduction in clearance times for most clinical rooms, thereby improving hospital efficiency while also safeguarding patients and staff.

2.
Mayo Clin Proc ; 96(7): 1792-1800, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34218858

RESUMO

OBJECTIVE: To quantify the efficacy of masking and "social distancing" on the transmission of airborne particles from a phantom aerosol source (simulating an infected individual) to a nearby target (simulating a healthy bystander) in a well-controlled setting. METHODS: An aerosol was created using monodisperse polystyrene latex beads in place of infectious respiratory secretions. Detection was by aerodynamic particle spectrometry. Both reusable cloth masks and disposable paper masks were studied. Transmission was simulated indoors during a 3-minute interval to eliminate the effect of variable ventilation rate on aerosol exposure. The study commenced on September 16, 2020, and concluded on December 15, 2020. RESULTS: Compared with a baseline of 1-foot separation with no masks employed, particle count was reduced by 84% at 3 feet of separation and 97% at 6 feet. A modest decrease in particle count was observed when only the receiver was masked. The most substantial exposure reduction occurred when the aerosol source was masked (or both parties were masked). When both the source and target were masked, particle count was reduced by more than 99.5% of baseline, regardless of separation distance or which type of mask was employed. CONCLUSION: These results support the principle of layered protection to mitigate transmission of SARS-CoV-2, the virus causing COVID-19, and other respiratory viruses and emphasize the importance of controlling the spread of aerosol at its source. The combination of masking and distancing reduced the exposure to exhaled particulates more than any individual measure. Combined measures remain the most effective way to combat the spread of respiratory infection.


Assuntos
Aerossóis , Máscaras , Distanciamento Físico , COVID-19/transmissão , Manequins
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa