Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(17): e2204726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709484

RESUMO

Feedback-based single-particle tracking (SPT) is a powerful technique for investigating particle behavior with very high spatiotemporal resolution. The ability to follow different species and their interactions independently adds a new dimension to the information available from SPT. However, only a few approaches have been expanded to multiple colors and no method is currently available that can follow two differently labeled biomolecules in 4 dimensions independently. In this proof-of-concept paper, the new modalities available when performing 3D orbital tracking with a second detection channel are demonstrated. First, dual-color tracking experiments are described studying independently diffusing particles of different types. For interacting particles where their motion is correlated, a second modality is implemented where a particle is tracked in one channel and the position of the second fluorescence species is monitored in the other channel. As a third modality, 3D orbital tracking is performed in one channel while monitoring its spectral signature in a second channel. This last modality is used to successfully readout accurate Förster Resonance Energy Transfer (FRET) values over time while tracking a mobile particle.

2.
J Cell Sci ; 130(11): 1904-1916, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28420672

RESUMO

Vesicle transport is regulated at multiple levels, including regulation by scaffolding proteins and the cytoskeleton. This tight regulation is essential, since slowing or stoppage of transport can cause accumulation of obstacles and has been linked to diseases. Understanding the mechanisms by which transport is regulated as well as how motor proteins overcome obstacles can give important clues as to how these mechanisms break down in disease states. Here, we describe that the cytoskeleton architecture impacts transport in a vesicle-size-dependent manner, leading to pausing of vesicles larger than the separation of the microtubules. We further develop methods capable of following 3D transport processes in living cells. Using these methods, we show that vesicles move using two different modes along the microtubule. Off-axis motion, which leads to repositioning of the vesicle in 3D along the microtubule, correlates with the presence of steric obstacles and may help in circumventing them.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/ultraestrutura , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microesferas , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Nocodazol/farmacologia , Imagem Óptica , Paclitaxel/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/genética , Proteína Vermelha Fluorescente
3.
Data Brief ; 29: 105280, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32190718

RESUMO

Recently, a large number of single particle tracking (SPT) approaches have been developed. Generally, SPT techniques can be split into two groups: ex post facto approaches where trajectory extraction is carried out after data acquisition and feedback based approaches that perform particle tracking in real time [1]. One feedback approach is 3D Orbital Tracking, where the laser excitation beam is rotated in a circle about the object, generating a so called orbit [2,3]. By calculating the particle position from the detected intensity after every orbit in relation to its center, this method allows the microscope to follow a single object in real time. The high spatiotemporal resolution of this method and the potential to optically manipulate the followed object during the measurement promises to yield new deep insights into biological systems [4-7]. By upgrading this approach in a way that the specimen is recentered by a xy-stage on the center of the microscope, particle tracking with this long-range tracking feature is no longer limited to the covered field-of-view. This allows for the observation of mitochondrial trafficking in living zebrafish embryos over long distances. Here, we provide the raw data for antero- and retrograde movement of mitochondria labelled with photo-activatable green fluorescent protein (mitoPAGFP). It relates to the scientific article "Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo" [8]. By applying a correlation analysis on the trajectories, it is possible to distinguish between active transport and pausing events with less biasing compared to the mean squared displacement approach.

4.
Sci Rep ; 10(1): 6504, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300110

RESUMO

Förster Resonance Energy Transfer (FRET) allows for the visualization of nanometer-scale distances and distance changes. This sensitivity is regularly achieved in single-molecule experiments in vitro but is still challenging in biological materials. Despite many efforts, quantitative FRET in living samples is either restricted to specific instruments or limited by the complexity of the required analysis. With the recent development and expanding utilization of FRET-based biosensors, it becomes essential to allow biologists to produce quantitative results that can directly be compared. Here, we present a new calibration and analysis method allowing for quantitative FRET imaging in living cells with a simple fluorescence microscope. Aside from the spectral crosstalk corrections, two additional correction factors were defined from photophysical equations, describing the relative differences in excitation and detection efficiencies. The calibration is achieved in a single step, which renders the Quantitative Three-Image FRET (QuanTI-FRET) method extremely robust. The only requirement is a sample of known stoichiometry donor:acceptor, which is naturally the case for intramolecular FRET constructs. We show that QuanTI-FRET gives absolute FRET values, independent of the instrument or the expression level. Through the calculation of the stoichiometry, we assess the quality of the data thus making QuanTI-FRET usable confidently by non-specialists.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência/métodos , Estudos de Avaliação como Assunto , Fluorescência
5.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180320

RESUMO

We present the development and in vivo application of a feedback-based tracking microscope to follow individual mitochondria in sensory neurons of zebrafish larvae with nanometer precision and millisecond temporal resolution. By combining various technical improvements, we tracked individual mitochondria with unprecedented spatiotemporal resolution over distances of >100 µm. Using these nanoscopic trajectory data, we discriminated five motional states: a fast and a slow directional motion state in both the anterograde and retrograde directions and a stationary state. The transition pattern revealed that, after a pause, mitochondria predominantly persist in the original direction of travel, while transient changes of direction often exhibited longer pauses. Moreover, mitochondria in the vicinity of a second, stationary mitochondria displayed an increased probability to pause. The capability of following and optically manipulating a single organelle with high spatiotemporal resolution in a living organism offers a new approach to elucidating their function in its complete physiological context.


Assuntos
Axônios/metabolismo , Rastreamento de Células/métodos , Imageamento Tridimensional/métodos , Mitocôndrias/metabolismo , Células Receptoras Sensoriais/metabolismo , Vertebrados/metabolismo , Animais , Transporte Biológico , Larva/metabolismo , Microscopia Confocal/métodos , Nanotecnologia/métodos , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa