Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Plant Biol ; 24(1): 565, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879490

RESUMO

BACKGROUND: AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS: The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS: These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Genes de Plantas , População do Leste Asiático
2.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216434

RESUMO

Zanthoxylum bungeanum is one of the most important medicinal and edible homologous plants because of its potential health benefits and unique flavors. The chemical components in compositions and contents vary with plant genotype variations and various environmental stress conditions. Fatty acids participate in various important metabolic pathways in organisms to resist biotic and abiotic stresses. To determine the variations in metabolic profiling and genotypes, the fatty acid profiling and key differential genes under low temperature stress in two Z. bungeanum varieties, cold-tolerant (FG) and sensitive (FX), were investigated. Twelve main fatty acids were found in two Z. bungeanum varieties under cold stress. Results showed that the contents of total fatty acids and unsaturated fatty acids in FG were higher than those in FX, which made FG more resistant to low temperature. Based on the result of orthogonal partial least squares discriminant analysis, palmitic acid, isostearic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FG under cold stress, while isomyristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FX. Furthermore, fatty acid synthesis pathway genes fatty acyl-ACP thioesterase A (FATA), Delta (8)-fatty-acid desaturase 2 (SLD2), protein ECERIFERUM 3 (CER3), fatty acid desaturase 3 (FAD3) and fatty acid desaturase 5 (FAD5) played key roles in FG, and SLD2, FAD5, 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS I), fatty acyl-ACP thioesterase B (FATB) and acetyl-CoA carboxylase (ACC) were the key genes responding to low temperature in FX. The variation and strategies of fatty acids in two varieties of Z. bungeanum were revealed at the metabolic and molecular level. This work provides a reference for the study of chemical components in plant stress resistance.


Assuntos
Ácidos Graxos/genética , Genes de Plantas/genética , Zanthoxylum/genética , Expressão Gênica/genética , Temperatura
3.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563160

RESUMO

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.


Assuntos
Secas , Zanthoxylum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Zanthoxylum/genética , Zanthoxylum/metabolismo
4.
J Sci Food Agric ; 102(5): 1823-1831, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462928

RESUMO

BACKGROUND: Zanthoxylum bungeanum pericarps (ZBP) are commonly used as food additives and traditional herbal medicines. Several mineral elements are known to have important physiological functions in organisms, whereas others are reported to have toxic effects. We determined levels of macro elements (Mg, S and Ca), essential trace elements (B, Mn, Fe, Cu, Zn, Se and Mo) and toxic elements (Ni, Al, Cr, As, Cd, Hg and Pb) in the pericarps of 19 Z. bungeanum cultivars. Hazard index values and incremental lifetime cancer risks were calculated to express health risks associated with pericarp consumption. Moreover, several chemometric analyses based on the mineral elements were used to distinguish Z. bungeanum cultivars. RESULTS: The concentrations of 17 determined elements in the pericarps were ranked: Ca > Mg > S > Fe > Al > Mn > Zn > B > Cu > Ni > Pb > Cr > Mo > As > Cd > Hg > Se. The elements Zn, Cr and As had the highest variations in their concentrations. Cu, Mn, Se, Zn, Al, As, Cd, Cr, Hg, Ni and Pb posed some non-cancer risks, while As and Cd posed cancer risks. Mn, Fe, Zn, and Al were chosen as critical element markers for assessing ZBP using chemometric analyses. CONCLUSION: Chemometric analyses could highlight mineral concentration differentiation among the 19 cultivars. The Z. bungeanum cultivar Z12 (from Wudu, Gansu) is best for producing ZBP, and cultivar Z18 (Guanling, Guizhou) can be a reference to classify and evaluate ZBP quality. The results provide valuable information for evaluating the potential safety risks of ZBP and contribute to inter-cultivar discrimination. © 2021 Society of Chemical Industry.


Assuntos
Mercúrio , Oligoelementos , Zanthoxylum , Quimiometria , Mercúrio/análise , Minerais/análise , Oligoelementos/análise , Oligoelementos/toxicidade
5.
BMC Plant Biol ; 21(1): 178, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849456

RESUMO

BACKGROUND: Apomixis is a form of asexual reproduction that produces offspring without the need for combining male and female gametes, and the offspring have the same genetic makeup as the mother. Therefore, apomixis technology has great application potential in plant breeding. To identify the apomixis types and critical period, embryonic development at different flower development stages of Zanthoxylum bungeanum was observed by cytology. RESULTS: The results show that the S3 stage is the critical period of apomixis, during which the nucellar cells develop into an adventitious primordial embryo. Cytological observations showed that the type of apomixis in Z. bungeanum is sporophytic apomixis. Furthermore, miRNA sequencing, miRNA-target gene interaction, dual luciferase reporter assay, and RT-qPCR verification were used to reveal the dynamic regulation of miRNA-target pairs in Z. bungeanum apomixis. The miRNA sequencing identified 96 mature miRNAs, of which 40 were known and 56 were novel. Additionally, 29 differentially expressed miRNAs were screened according to the miRNAs expression levels at the different developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that the target genes of the differentially expressed miRNAs were mainly enriched in plant hormone signal transduction, RNA biosynthetic process, and response to hormone pathways. CONCLUSIONS: During the critical period of apomictic embryonic development, miR172c significantly reduces the expression levels of TOE3 and APETALA 2 (AP2) genes, thereby upregulating the expression of the AGAMOUS gene. A molecular regulation model of miRNA-target pairs was constructed based on their interactions and expression patterns to further understand the role of miRNA-target pairs in apomixis. Our data suggest that miR172c may regulates AGAMOUS expression by inhibiting TOE3 in the critical period of apomixis.


Assuntos
Apomixia/genética , Flores/crescimento & desenvolvimento , MicroRNAs/genética , RNA de Plantas/genética , Sementes/embriologia , Zanthoxylum/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Análise de Sequência de RNA , Zanthoxylum/embriologia , Zanthoxylum/genética
6.
Planta ; 249(6): 1715-1730, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963237

RESUMO

MAIN CONCLUSION: In this paper, an interaction model of apomixis-related genes was constructed to analyze the emergence of apomictic types. It is speculated that apomixis technology will be first implemented in gramineous plants. Apomixis (asexual seed formation) is a phenomenon in which a plant bypasses the most fundamental aspects of sexual reproduction-meiosis and fertilization-to form a viable seed. Plants can form seeds without fertilization, and the seed genotype is consistent with the female parent. The development of apomictic technology would be revolutionary for agriculture and for food production as it would reduce costs and breeding times and also avoid many complications typical of sexual reproduction (e.g. incompatibility barriers) and of vegetative propagation (e.g. viral transfer). The application of apomictic reproductive technology has the potential to revolutionize crop breeding. This article reviews recent advances in apomixis in cytology and molecular biology. The general idea of identifying apomixis was proposed and the process of the emergence of non-fusion types was discussed. To better understand the apomixis mechanism, an apomixis regulatory model was established. At the same time, the realization of apomixis technology is proposed, which provides reference for the research and application of apomixis.


Assuntos
Apomixia/genética , Magnoliopsida/embriologia , Magnoliopsida/genética , Modelos Biológicos , Melhoramento Vegetal , Desenvolvimento Vegetal , Sementes/embriologia , Sementes/genética
7.
Chem Biodivers ; 16(2): e1800238, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30176110

RESUMO

Zanthoxylum bungeanum extracts were prepared using seven solvents: water, methanol, ethanol, acetic acid, ethyl acetate, chloroform, and benzene. The volatile composition in the extracts was qualitatively analyzed using headspace solid-phase microextraction coupled with gas chromatography mass spectrometry detection, and the alkylamide composition was determined using high-performance liquid chromatography. The extract compositions differed with respect to the solvents. A total of 49 volatile components belonging to four groups, terpenoids, alcohols, esters, and ketones, were identified in the extracts. The Z. bungeanum extracts were either ester or terpenoid type, dominated by linalyl acetate. The extracts were divided into three distinct groups based on principal component analysis and hierarchical clustering analysis. Water, methanol, and ethanol extracts could be applied in the food and pharmaceutical industries.


Assuntos
Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Zanthoxylum/química , Antioxidantes/farmacologia , Análise por Conglomerados , Ésteres/análise , Monoterpenos/análise , Análise de Componente Principal , Solventes/farmacologia , Terpenos/análise , Volatilização
8.
Int J Mol Sci ; 20(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586928

RESUMO

The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Zanthoxylum bungeanum, a total of 38 ZbWRKY were identified and these were then classified and identified with Arabidopsis WRKY. Using bioinformatics analyses based on the structural characteristics of the conservative domain, 38 WRKY transcription factors were identified and categorized into three groups: Groups I, II, and III. Of these, Group II can be divided into four subgroups: subgroups IIb, IIc, IId, and IIe. No ZbWRKY members of subgroup IIa were found in the sequencing data. In addition, 38 ZbWRKY were identified by real-time PCR to determine the behavior of this family of genes under drought stress. Twelve ZbWRKY transcription factors were found to be significantly upregulated under drought stress and these were identified by relative quantification. As predicted by the STRING website, the results show that the WRKYs are involved in four signaling pathways-the jasmonic acid (JA), the salicylic acid (SA), the mitogen-activated protein kinase (MAPK), and the ethylene signaling pathways. ZbWRKY33 is the most intense transcription factor in response to drought stress. We predict that WRKY33 binds directly to the ethylene synthesis precursor gene ACS6, to promote ethylene synthesis. Ethylene then binds to the ethylene activator release signal to activate a series of downstream genes for cold stress and osmotic responses. The roles of ZbWRKY transcription factors in drought stress rely on a regulatory network center on the JA signaling pathway.


Assuntos
Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Zanthoxylum/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Ciclopentanos/metabolismo , Secas , Etilenos/metabolismo , Liases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Zanthoxylum/genética
9.
Molecules ; 23(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601541

RESUMO

Real-time reverse transcription quantitative PCR has become a common method for studying gene expression, however, the optimal selection of stable reference genes is a prerequisite for obtaining accurate quantification of transcript abundance. Suitable reference genes for RT-qPCR have not yet been identified for Chinese prickly ash (Zanthoxylum bungeanum Maxim.). Chinese prickly ash is the source of an important food seasoning in China. In recent years, Chinese prickly ash has also been developed as a medicinal plant. The expression stabilities of ten genes (18S, 28S, EF, UBA, UBQ, TIF, NTB, TUA, RPS, and TIF5A) were evaluated in roots, stems, leaves, flowers and fruits at five developmental stages and also under stress from cold, drought, and salt. To do this we used three different statistical algorithms: geNorm, NormFinder and BestKeeper. Among the genes investigated, UBA and UBQ were found to be most stable for the different cultivars and different tissues examined, UBQ and TIF for fruit developmental stage. Meanwhile, EF and TUA were most stable under cold treatment, EF and UBQ under drought treatment and NTB and RPS under salt treatment. UBA and UBQ for all samples evaluated were most stably expressed, but 18S, TUA and RPS were found to be generally unreliable as reference genes. Our results provide a basis for the future selection of reference genes for biological research with Chinese prickly ash, under a variety of conditions.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Proteínas de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Zanthoxylum , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Zanthoxylum/genética , Zanthoxylum/metabolismo
10.
Bioorg Med Chem Lett ; 27(12): 2650-2654, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28460818

RESUMO

Factor VIIa (FVIIa) inhibitors have shown strong antithrombotic efficacy in preclinical thrombosis models with limited bleeding liabilities. Discovery of potent, orally active FVIIa inhibitors has been largely unsuccessful due to the requirement of a basic P1 group to interact with Asp189 in the S1 binding pocket, limiting their membrane permeability. We have combined recently reported neutral P1 binding substituents with a highly optimized macrocyclic chemotype to produce FVIIa inhibitors with low nanomolar potency and enhanced permeability.


Assuntos
Fator VIIa/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 26(2): 338-342, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707398

RESUMO

Eight isobutylhydroxyamides, including three new (1-3), qinbunamides A-C, and five known sanshools (4-8), ZP-amide A (4), ZP-amide B (5), ZP-amide E (6), ZP-amide C (7), and ZP-amide D (8), were isolated from the pericarps of cultivated Zanthoxylum bungeanum Maxim, cultivated in Qinling mountain area, Shaanxi, China. The structures of all compounds were determined on the basis of spectroscopic techniques, including 1D and 2D NMR analysis and comparison with previously reported data. Compounds 1 and 2 are the first example of isobutylhydroxyamides containing an ethoxy group, and compound 3 is a rare C11 fatty acid-containing sanshool existing in genus Zanthoxylum. The tested compounds enhanced nerve growth factor (NGF)-mediated neurite outgrowth (neurotrophic activity) in rat pheochromocytoma (PC12) cells, but were inactive in the inhibitory effects on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and growth of HCT116 cells at concentrations of 50µM.


Assuntos
Amidas/farmacologia , Ácidos Graxos Insaturados/farmacologia , Fator de Crescimento Neural/metabolismo , Zanthoxylum/química , Amidas/química , Amidas/isolamento & purificação , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Células HCT116 , Humanos , Camundongos , Células PC12 , Ratos
12.
Bioorg Med Chem Lett ; 26(20): 5051-5057, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27612545

RESUMO

Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.


Assuntos
Fator VIIa/antagonistas & inibidores , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Tromboplastina/antagonistas & inibidores , Animais , Cães , Desenho de Fármacos , Humanos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 26(2): 472-478, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26704266

RESUMO

The synthesis, structural activity relationships (SAR), and selectivity profile of a potent series of phenylalanine diamide FXIa inhibitors will be discussed. Exploration of P1 prime and P2 prime groups led to the discovery of compounds with high FXIa affinity, good potency in our clotting assay (aPPT), and high selectivity against a panel of relevant serine proteases as exemplified by compound 21. Compound 21 demonstrated good in vivo efficacy (EC50=2.8µM) in the rabbit electrically induced carotid arterial thrombosis model (ECAT).


Assuntos
Anilidas/farmacologia , Fator XIa/antagonistas & inibidores , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Anilidas/síntese química , Animais , Cristalografia por Raios X , Cães , Fenilalanina/síntese química , Coelhos , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 24(10): 2257-72, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27073051

RESUMO

Pyridine-based Factor XIa (FXIa) inhibitor (S)-2 was optimized by modifying the P2 prime, P1, and scaffold regions. This work resulted in the discovery of the methyl N-phenyl carbamate P2 prime group which maintained FXIa activity, reduced the number of H-bond donors, and improved the physicochemical properties compared to the amino indazole P2 prime moiety. Compound (S)-17 was identified as a potent and selective FXIa inhibitor that was orally bioavailable. Replacement of the basic cyclohexyl methyl amine P1 in (S)-17 with the neutral p-chlorophenyltetrazole P1 resulted in the discovery of (S)-24 which showed a significant improvement in oral bioavailability compared to the previously reported imidazole (S)-23. Additional improvements in FXIa binding affinity, while maintaining oral bioavailability, was achieved by replacing the pyridine scaffold with either a regioisomeric pyridine or pyrimidine ring system.


Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Fator XIa/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Administração Oral , Animais , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacocinética , Coagulação Sanguínea/efeitos dos fármacos , Cristalografia por Raios X , Cães , Fator XIa/metabolismo , Humanos , Modelos Moleculares , Fenilcarbamatos/administração & dosagem , Fenilcarbamatos/química , Fenilcarbamatos/farmacocinética , Fenilcarbamatos/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética
15.
Molecules ; 21(10)2016 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-27782100

RESUMO

Four new unsaturated aliphatic acid amides, named zanthoamides A-D (1-4), and eight known ones-tetrahydrobungeanool (5), ZP-amide A (6), ZP-amide B (7), ZP-amide C (8), ZP-amide D (9), ZP-amide E (10), bugeanumamide A (11), and (2E,7E,9E)-N-(2-hydroxy-2-methylpropyl)-6,11-dioxo-2,7,9-dodecatrienamide (12)-were isolated from the pericarps of Zanthoxylum bungeanum. The structures of these compounds were elucidated by extensive use of spectroscopic methods, including HRESIMS, 1D and 2D NMR analyses and comparison with previously reported data. Compound 4 contained a rare C6 fatty acid unit with an acetal group. Results revealed that compounds 1, 5, 6, and 12 showed inhibitory effects on nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages, with IC50values of 48.7 ± 0.32, 27.1 ± 1.15, 49.8 ± 0.38, and 39.4 ± 0.63 µM, respectively, while the other compounds were inactive (IC50 > 60 µM). They could contribute to the anti-inflammatory effects of Z. bungeanum by suppression of NO production.


Assuntos
Amidas/química , Amidas/farmacologia , Óxido Nítrico/metabolismo , Zanthoxylum/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 25(10): 2169-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881820

RESUMO

Heterocyclic amide isosteres were incorporated into a phenylglycine-based tissue factor/factor VIIa (TF-FVIIa) inhibitor chemotype, providing potent inhibitors. An X-ray co-crystal structure of phenylimidazole 19 suggested that an imidazole nitrogen atom effectively mimics an amide carbonyl, while the phenyl ring forms key hydrophobic interactions with the S1' pocket. Exploration of phenylimidazole substitution led to the discovery of potent, selective and efficacious inhibitors of TF-FVIIa.


Assuntos
Desenho de Fármacos , Fator VIIa/antagonistas & inibidores , Imidazóis/química , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Cristalografia por Raios X , Estrutura Molecular , Inibidores de Serina Proteinase/química
17.
Bioorg Med Chem Lett ; 25(4): 925-30, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25592713

RESUMO

The structure-activity relationships (SAR) of six-membered ring replacements for the imidazole ring scaffold is described. This work led to the discovery of the potent and selective pyridine (S)-23 and pyridinone (±)-24 factor XIa inhibitors. SAR and X-ray crystal structure data highlight the key differences between imidazole and six-membered ring analogs.


Assuntos
Fator XIa/antagonistas & inibidores , Piridinas/farmacologia , Piridonas/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 25(7): 1635-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25728130

RESUMO

Compound 2 was previously identified as a potent inhibitor of factor XIa lacking oral bioavailability. A structure-based approach was used to design analogs of 2 with novel P1 moieties with good selectivity profiles and oral bioavailability. Further optimization of the P1 group led to the identification of a 4-chlorophenyltetrazole P1 analog, which when combined with further modifications to the linker and P2' group provided compound 32 with FXIa Ki=6.7 nM and modest oral exposure in dogs.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Fator XIa/antagonistas & inibidores , Indazóis/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Fator XIa/efeitos dos fármacos , Humanos , Indazóis/administração & dosagem , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 23(8): 2432-5, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23478148

RESUMO

A 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model. A crystal structure of BMS-593214 bound to FVIIa highlights key contacts with Asp 189, Lys 192, and the S2 pocket.


Assuntos
Benzoatos/química , Benzoatos/farmacologia , Fator VIIa/antagonistas & inibidores , Fator VIIa/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Trombose/prevenção & controle , Animais , Benzoatos/síntese química , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Coelhos , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 23(6): 1604-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23416003

RESUMO

Bicyclic pyrazinone and pyrimidinone amides were designed and synthesized as potent TF-FVIIa inhibitors. SAR demonstrated that the S2 and S3 pockets of FVIIa prefer to bind small, lipophilic groups. An X-ray crystal structure of optimized compound 9b bound in the active site of FVIIa showed that the bicyclic scaffold provides 5 hydrogen bonding interactions in addition to projecting groups for interactions within the S1, S2 and S3 pockets. Compound 9b showed excellent FVIIa potency, good selectivity against FIXa, Xa, XIa and chymotrypsin, and good clotting activity.


Assuntos
Amidas/química , Amidinas/síntese química , Desenho de Fármacos , Fator VIIa/antagonistas & inibidores , Pirazinas/química , Pirazinas/síntese química , Pirimidinonas/química , Inibidores de Serina Proteinase/síntese química , Amidas/síntese química , Amidas/metabolismo , Amidinas/química , Amidinas/metabolismo , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Domínio Catalítico , Cristalografia por Raios X , Fator VIIa/metabolismo , Ligação Proteica , Pirazinas/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa