Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(7): 5159-5166, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479087

RESUMO

The precise placement of semiconductor nanowires (NWs) into two- or three-dimensional (2D/3D) micro-/nanoarchitectures is a key for the construction of integrated functional devices. However, long-pending challenges still exist in high-resolution 3D assembly of semiconductor NWs. Here, we have achieved directional assembly of zinc oxide (ZnO) NWs into nearly arbitrary 3D architectures with high spatial resolution using two-photon polymerization. The NWs can regularly align in any desired direction along the laser scanning pathway. Through theoretical calculation and control experiments, we unveiled the laser-induced assembly mechanism and found that the nonoptical forces are the dominant factor leading to the directional assembly of ZnO NWs. A ZnO-NW-based polarization-resolved UV photodetector of excellent photoresponsivity was fabricated to demonstrate the potential application of the assembled ZnO NWs. This work is expected to promote the research on NW-based integrated devices such as photonic integrated circuits, sensors, and metamaterial with unprecedented controllability of the NW's placement in three dimensions.

2.
Nano Lett ; 19(6): 4195-4204, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31136188

RESUMO

The ability to design and enhance the nonlinear optical responses in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is both of fundamental interest and highly desirable for developing TMDC-based nonlinear optical applications, such as nonlinear convertors and optical modulators. Here, we report for the first time a strong anisotropic enhancement of optical second-harmonic generation (SHG) in monolayer molybdenum disulfide (MoS2) by integrating with one-dimensional (1D) titanium dioxide nanowires (NWs). The SHG signal from the MoS2/NW hybrid structures is over 2 orders of magnitude stronger than that in the bare monolayer MoS2. Polarized SHG measurements revealed a giant anisotropy in SHG response of the MoS2/NW hybrid. The pattern of the anisotropic SHG depends highly on the stacking angle between the nanowire direction and the MoS2 crystal orientation, which is attributed to the 1D NW-induced directional strain fields in the layered MoS2. A similar effect has also been observed in bilayer MoS2/NW hybrid structure, further proving the proposed scenario. This work provides an effective approach to selectively and directionally designing the nonlinear optical response of layered TMDCs, paving the way for developing high-performance, anisotropic nonlinear photonic nanodevices.

3.
Nanoscale ; 11(18): 9176-9184, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038144

RESUMO

Electrically conductive polymers have emerged as functional materials for future electronics due to their high electrical conductivity, real-time responsiveness, easy film-formation ability and desirable stretchability. However, the previously developed conductive polymer electronics are still limited to macroscopic hydrogels or films without complicated designs of fine features. Herein, a carbon nanotube-doped hydrophilic photoresist was ultrafast laser processed as an absorbent 3D scaffold to fabricate nanostructured electrically conductive hydrogels (NECHs) for the first time. Taking advantage of the intermolecular forces, we in situ interpenetrated π-conjugated poly(3,4-ethylenedioxythiophene) into NECHs by self-assembly to combine fine features (resolution down to 500 nm, at least two-order accuracy improvement than that in the case of standard 3D-printed electronics) and achieve a high electrical conductivity (0.1-42.5 S m-1), device-level mechanical properties and desirable tolerance to humid/acid environments. Consequently, several reliable, nanostructured, metal-free electrical circuits, alcohol micro-sensors, interdigital capacitors, and loop inductors have been experimentally identified and characterized. The NECHs successfully break current limitations by making better use of the two photon hydrogelation and highly conductive polymer. Optical clarity, conductivity, and extensibility of the NECHs promise their applications in micro energy storage devices, epidermal electronics, nanorobotics and electrical circuit boards for challenging conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa