Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rec ; 23(11): e202300184, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495934

RESUMO

Traditional energy from fossil fuels like petroleum and coal is limited and contributes to global environmental pollution and climate change. Developing sustainable and eco-friendly energy is crucial for addressing significant challenges such as climate change, energy dilemma and achieving the long-term development of human society. Biomass hydrogels, which are easily synthesized and modified, have diverse sources and can be designed for different applications. They are being extensively researched for their applications in artificial intelligence, flexible sensing, biomedicine, and food packaging. The article summarizes recent advances in the preparation and applications of biomass-based photothermal conversion hydrogels, discussing the light source, photothermal agents, matrix, and preparation methods in detail. It also explores the use of these hydrogels in seawater desalination, photothermal therapy, antibacterial agents, and light-activated materials, offering new ideas for developing sustainable, efficient, and advanced photothermal conversion biomass hydrogel materials. The article concludes with suggestions for future research, highlighting the challenges and prospects in this field and paving the way for developing of long-lasting, efficient energy materials.


Assuntos
Inteligência Artificial , Hidrogéis , Humanos , Antibacterianos/farmacologia , Materiais Biocompatíveis , Biomassa
2.
Org Biomol Chem ; 21(23): 4874-4880, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37249437

RESUMO

New P,Nsp3 bidentate ligands containing two chiral carbon centers were developed and applied to palladium-catalyzed asymmetric allylic substitution reactions. Good generalities with various nucleophiles, including carbon, nitrogen and oxygen containing nucleophiles, were achieved with up to 96% ee and 98% yield. This reaction provides an efficient method for the asymmetric formation of C-C, C-N and C-O bonds.

3.
Analyst ; 147(21): 4657-4673, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36155993

RESUMO

Biomass materials have abundant natural resources, renewability and good biochemical compatibility, so biomass-based fluorescent materials prepared from biomass materials have gradually become a research hotspot. In particular, the low cost and environmentally friendly properties of chitosan have been widely used in the field of functional materials. Chitosan-based functional materials have attracted extensive attention in the detection and removal of organic and inorganic pollutants. They have been widely used in biological imaging, environmental detection, drug carriers and other fields. This paper reviews the preparation and application of chitosan-based fluorescent probes, including chitosan-derived fluorescent probe materials and chitosan-based carbon quantum dots. At the same time, it focuses on the application research of chitosan-based carbon quantum dots in the fields of environmental detection, cell imaging, drug carriers, photocatalysis, etc. In addition, it provides new ideas and application prospects for the development and application of chitosan-based fluorescent materials in the future.


Assuntos
Quitosana , Poluentes Ambientais , Pontos Quânticos , Corantes Fluorescentes/química , Quitosana/química , Pontos Quânticos/química , Carbono/química , Portadores de Fármacos
4.
J Opt Soc Am A Opt Image Sci Vis ; 39(3): 431-439, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297426

RESUMO

A type of Christiansen filter that takes the form of a smooth cylindrical lens of even symmetry is proposed. By varying the shape of the lens, the filter can be made to realize many common filtering responses, including the polynomial function response, the Gaussian function response, and the sinc function response. A systematic design technique based on inverse scattering is established, and a desired, prescribed response can be tailored by properly shaping the lens of the filter. Three prototypical Christiansen filters, namely, a second-order all-real-roots filter, a second-order sinc filter, and a Gaussian filter, are synthesized using the proposed method. A prescribed response at 545 nm with a FWHM of 2 nm is achieved systematically by all of the three Christiansen filters.

5.
Opt Express ; 28(15): 22064-22075, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752474

RESUMO

Perfect state transfer of the bus topological system enables the sharing of information or excitation between nodes. Herein we report groundbreaking research on the transfer of the graphene-bridged bus topological network structure to an electromagnetic metamaterial setting, named "bus topological network metamaterials (TNMMs)." Correspondingly, the electromagnetic response imprints onto the topological excitation. We find that the bus-TNMMs display a perfect modulation of the terahertz response. The blue-shift of resonance frequency could increase to as large as 1075 GHz. The modulation sensitivity of the bus-TNMMs reaches 1027 GHz/Fermi level unit (FLU). Meanwhile, with the enhancement of modulation, the line shape of the reflection keeps underformed. Parabola, ExpDec1, and Asymptotic models are used to estimate the modulation of the resonance frequency. Besides, the bus-TNMMs system provides a fascinating platform for dynamic cloaking. By governing the Fermi level of graphene, the bus-TNMMs can decide whether it is cloaking or not in a bandwidth of 500 GHz. Also, the bus-TNMMs exhibit the immense potential for dynamically detecting the vibrational fingerprinting of an analyte. These results give a far-reaching outlook for steering dynamically the terahertz response with the bus-TNMMs. Therefore, we believe that the discovery of bus-TNMMs will revolutionize our understanding of the modulation of the electromagnetic response.

6.
Opt Express ; 27(14): 19520-19529, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503709

RESUMO

A biosensor based on electromagnetically induced transparent (EIT) metamaterials (MMs) is proposed owing to the low loss and high Q-factor. The theoretical sensitivity of the biosensor based on EIT-like MMs were evaluated up to 248.8 GHz/RIU (RIU, Refractive Index Unit). In experiments, the cancer cells A549, as an analyte, are cultured on EIT-like MMs surface. The results show that when the cell concentration increases from 0.5 × 105 to 5 × 105 cells/ml, the frequency shift Δf could change from 24 to 50 GHz. Moreover, the coupled oscillators model is applied to explain the effect of the refractive index of analyte in simulations and the cell concentration in experiments on the EIT-like MMs. The fitting results exhibit that the refractive index of analyte and cell concentration significantly affect the radiative damping of the bright mode resonator γ1. The proposed EIT-like MMs biosensors show great potentials for cell measurement because any change that results in the lineshape variation in EIT-like MMs can only be attributed to the change of external dielectric environment due to the suppression of radiative losses.


Assuntos
Neoplasias Pulmonares/patologia , Técnicas Biossensoriais , Linhagem Celular Tumoral , Eletricidade , Campos Eletromagnéticos , Humanos , Refratometria
7.
Appl Opt ; 58(23): 6268-6273, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31503769

RESUMO

In this paper, we have cultured normal epithelial cells (HaCaT) as analytes to detect the sensitivity of a biosensor based on Fano resonance metamaterials (FRMMs). The frequency shift Δf of the transmission spectrum was experimentally measured at three different concentrations (0.2×105, 0.5×105, and 5×105 cell/ml) of HaCaT cells. By employing the FRMMs-based biosensor, the detection concentration of HaCaT cells can approximately arrive at 0.2×105 cell/ml; further, the corresponding Δf is 25 GHz, which reaches the measurement limit of the THz-TDS system. Additionally, the increase of HaCaT cell concentration causes a different redshift of Δf from 24-50 GHz, and the maximum of Δf can reach 50 GHz when the HaCaT cell concentration is at 5×105 cell/ml. Similarly, the simulated results show that the Δf depends on the numbers of analytes with a semiball shape and the refractive index of analytes. The theoretical sensitivity was calculated to be 481 GHz/RIU. The proposed FRMMs-based biosensor paves a fascinating platform for biological and biomedical applications and may become a valuable complementary reference for traditional biological research.


Assuntos
Técnicas Biossensoriais , Células Epiteliais/citologia , Fenômenos Ópticos , Simulação por Computador , Humanos
8.
Int J Biol Macromol ; 270(Pt 1): 132088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723821

RESUMO

Chitosan, as a natural biomass material, is green, recyclable, sustainable and well biocompatible. The molecular chain is rich in active groups such as amino and hydroxyl groups, and its preparation of fluorescent probes has the advantages of biocompatibility and efficient detection performance. In this study, a bis(benzaldehyde) (BHD) fluorescent functional molecule was designed. Then a series of fluorescent chitosan-based hydrogel films (CSBHD) were prepared using chitosan as raw material and BHD as cross-linking agent. As a fluorescent probe for metal ions, CSBHD was able to efficiently detect Fe2+ with a linear correlation of fluorescence intensity in the range of 0-160 µM, and the limit of detection (LOD) was 0.55 µM. Moreover, it has excellent adsorption performance for Fe2+ ions, with a maximum adsorption capacity of 223.5 g/mg at 500 mg/L Fe2+ concentration. Finally, we characterised the structure and microscopic morphology of CSBHD films and found that CSBHD as a hydrogel film has a high cross-linking density, good water resistance, excellent thermal stability, strong resistance to swelling, and excellent stability in cycling tests. Hence, it has great potential for application in adsorption and detection of Fe2+ ions. It also provides a good strategy for the application of chitosan based fluorescent probe materials in environmental monitoring and heavy metal ion adsorption.


Assuntos
Benzaldeídos , Quitosana , Corantes Fluorescentes , Hidrogéis , Ferro , Quitosana/química , Adsorção , Hidrogéis/química , Ferro/química , Benzaldeídos/química , Corantes Fluorescentes/química , Reagentes de Ligações Cruzadas/química , Limite de Detecção , Membranas Artificiais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
9.
Int J Biol Macromol ; 242(Pt 2): 124915, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211080

RESUMO

Chitosan is a kind of natural polysaccharide biomass with the second highest content in nature after cellulose, which has good biological properties such as biocompatibility, biodegradability, hemostasis, mucosal adsorption, non-toxicity, and antibacterial properties. Therefore, hydrogels prepared from chitosan have the advantages of good hydrophilicity, unique three-dimensional network structure, and good biocompatibility, so they have received extensive attention and research in environmental testing, adsorption, medical materials, and catalytic supports. Compared with traditional polymer hydrogels, biomass chitosan-based hydrogels have advantages such as low toxicity, excellent biocompatibility, outstanding processability, and low cost. This paper reviews the preparation of various chitosan-based hydrogels using chitosan as raw material and their applications in the fields of medical materials, environmental detection, catalytic carriers, and adsorption. Some views and prospects are put forward for the future research and development of chitosan-based hydrogels, and it is believed that chitosan-based hydrogels will be able to obtain more valuable applications.


Assuntos
Quitosana , Quitosana/química , Materiais Biocompatíveis/química , Hidrogéis/química , Polissacarídeos/química , Celulose
10.
Anal Methods ; 15(48): 6716-6721, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38050678

RESUMO

Fe3+ is essential for humans, and its deficiency or excess can be harmful to human health; thus, it is crucial to detect Fe3+. Herein, a novel 1,8-naphthylimide rhodamine-based fluorescent probe (NA-RhBEA) was prepared from rhodamine B, anhydrous ethylenediamine, and 1,8-naphthoic anhydride. This fluorescent probe complexes Fe3+ with N and O on the carboxyl groups of its spironolactam structure and part of the 1,8-naphthalenedicarboxylic anhydride structure, which results in spironolactam ring-opening and fluorescence. NA-RhBEA has high selectivity for Fe3+ in ethanol/buffer solution (4 : 1, v/v), and fluorescence is detected at an excitation wavelength λEX = 500 nm, an absorption peak appears at 585 nm, and a significant color change appears. The effect of the fluorescence intensity of Fe3+ under a series of different concentration conditions was investigated, and it was concluded that the fluorescence intensity increased with increasing Fe3+ concentration in the range of 0-500 µmol, and its detection limit was 0.84 µmol L-1. In addition, we explored the detection ability of NA-RhBEA in solutions with different pH values, mixed metal ions, and different solvents, and the results showed that the fluorescent sensor also has good anti-interference properties and some practical applicability.

11.
Int J Biol Macromol ; 253(Pt 4): 127082, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769762

RESUMO

The design and development of a rapid and quantitative method for the detection of heavy metal ions is of great importance for environmental protection. We have prepared a 1,8-Naphthalimide modified cellulose composite fluorescent hydrogel (CENAEA/PAA) with a stereo double network structure. Characterized by excellent hydrogel functional structure and fluorescence detection performance, it can efficiently and selectively identify and detect Cr(VI) with linear quenching in the range of 0-400 µmol/L and detection limit of 0.58 µmol/L for Cr(VI). The results show that the CENAEA/PAA can effectively adsorb Cr(VI) with a maximum adsorption capacity of 189.04 mg/g. Finally, the morphological characteristics, chemical structure, fluorescence properties and adsorption behavior of CENAEA/PAA were analyzed and fitted well with the pseudo-second-order model and Freundlich model. Thus, the present work provides a green and sustainable approach for the synthesis of a functional material that can be used for the detection and adsorption of heavy metal ions.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Naftalimidas , Corantes Fluorescentes , Hidrogéis , Cromo/química , Íons , Celulose/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
12.
ACS Appl Mater Interfaces ; 14(1): 2155-2165, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958542

RESUMO

Perovskites and graphene are receiving a meteoric rise in popularity in the field of active photonics because they exhibit excellent optoelectronic properties for dynamic manipulation of light-matter interactions. However, challenges still exist, such as the instability of perovskites under ambient conditions and the low Fermi level of graphene in experiments. These shortcomings limit the scope of applications when they are used alone in advanced optical devices. However, the combination of graphene and perovskites is still a promising route for efficient control of light-matter interactions. Here, we report a dual-optoelectronic metadevice fabricated by integrating terahertz metasurfaces with a sandwich complex composed of graphene, polyimide, and perovskites for ultra-wideband and multidimensional manipulation of higher-order Fano resonances. Owing to the photogenerated carriers and electrostatic doping effect, the dual optoelectronic metadevice showed different manipulation behavior at thermal imbalance (electrostatic doping state of the system). The modulation depth of the transmission amplitude reached 200%, the total resonant frequency shift was 800 GHz, and the tunable range of the resonant frequency was 68.8%. In addition, modulation of the maximum phase reached 346°. This work will inspire a new generation of metasurface-based optical devices that combine two active materials.

13.
Materials (Basel) ; 15(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009444

RESUMO

Graphene-based composite aerogel (GCA) refers to a solid porous substance formed by graphene or its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), with inorganic materials and polymers. Because GCA has super-high adsorption, separation, electrical properties, and sensitivity, it has great potential for application in super-strong adsorption and separation materials, long-life fast-charging batteries, and flexible sensing materials. GCA has become a research hotspot, and many research papers and achievements have emerged in recent years. Therefore, the fabrication, structure, performance, and application prospects of GCA are summarized and discussed in this review. Meanwhile, the existing problems and development trends of GCA are also introduced so that more will know about it and be interested in researching it.

14.
ACS Appl Mater Interfaces ; 12(10): 11388-11396, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32077287

RESUMO

It is vital and promising for portable and disposable biosensing devices to achieve on-site detection and analysis of cancer cells. Although traditional labeling techniques provide an accurate quantitative measurement, the complicated cell staining and high-cost measurements limit their further development. Here, we demonstrate a nonimmune biosensing technology. The plasmonic biosensors, which are based on anisotropic resonant split ring resonators in the terahertz range, successfully realize the antibody-free recognition of cancer cells. The dependences of Δf and the fitted phase slope on the cancer cell concentration at different polarizations give new perspective in hexagonal radar maps. The results indicate that the lung cancer cell A549 and liver cancer cell HepG2 can be distinguished and determined simply based on the enclosed shapes in the radar maps without any antibody introduction. The minimum concentration of identification reduces to as low as 1 × 104 cells/mL and such identification can be kept valid in a wide range of cell concentration, ranging from 104 to 105. The construction of two-dimensional extinction intensity cards of corresponding cancer cells based on the wavelet transform method also supplies corresponding information for the antibody-free recognition and determination of two cancer cells. Our plasmonic metasurface biosensors show a great potential in the determination and recognition of label-free cancer cells, being an alternative to nonimmune biosensing technology.


Assuntos
Técnicas Citológicas , Neoplasias/química , Ressonância de Plasmônio de Superfície , Anisotropia , Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Desenho de Equipamento , Células Hep G2 , Humanos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície , Análise de Ondaletas
15.
Nanoscale ; 12(3): 1719-1727, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894802

RESUMO

A multiple mode integrated biosensor based on higher order Fano metamaterials (FRMMs) is proposed. The frequency shifts (Δf) of x-polarized quadrupolar (Qx), octupolar (Ox), hexadecapolar (Hx), y-polarized quadrupolar (Qy) and octupolar (Oy) Fano resonance modes are integrated to detect the concentration of lung cancer cells. In experiments, the concentrations of lung cancer cells can be distinguished by the shape and distribution of integrated graphics. In addition, an anomalous response in Δf in resonant mode is surprisingly observed. As the cell concentration increases, the Δf at the Qx-dip, Qy-dip and Oy-dip successively experiences an increasing frequency shift stage (IFSS), decreasing frequency shift stage (DFSS) and re-increasing frequency shift stage (RIFSS). The extraordinary DFSS confirmed by single-factor analysis of variance (ANOVA) means an unusual physical phenomenon in metamaterial biosensors. By introducing a new dielectric constant εf, we amend perturbation theory to explain the unusual phenomenon in Δf. With the change of the mode order from Qx to Hx, the εf increases from -2.78 to 0.75, which implies that the negative εf leads to the appearance of the DFSS. As a platform for biosensing, this study opens a new window from the perspective of multiple mode integration.


Assuntos
Técnicas Biossensoriais
16.
Biosens Bioelectron ; 126: 485-492, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472446

RESUMO

A kind of novel biosensor based on the electromagnetic induced transparency like (EIT-like) metamaterials (MMs) have been proposed. It demonstrates that the symmetry-breaking double-splits ring resonators can realize the EIT-like plasmonic resonance, the according transparency window occurs at 1.67 THz. The coupled oscillators model illustrates that with the increase of asymmetry degree of double splits, the coupling between bright and dark mode is enhanced. Consequently, the non-radiative damping γ2 grows from 1.45 to 1.85 THz and coupling coefficient κ from 3.46 to 4.49 THz2, while the radiative damping γ1 decreases from 11.5 to 9 THz. Such EIT-like MMs were evaluated in simulation as the refractive index sensors, which the theoretical sensitivity was calculated to 455.7 GHz/RIU (RIU, Refractive Index Unit) under 11 µm-thick analyte layer. Meanwhile, the dependence of full width at half maximum (FWHM) on analyte thickness was also studied. In experiments, it is found that the frequency shift Δf increases from 50 to 90 GHz when the oral cancer cells (HSC3) concentration improves from 1 × 105 to 7 × 105 cells/ml. The maximum experimental sensitivity approaches 900 kHz/cell ml-1 at 7 × 105 cells/ml. Additionally, the apoptosis of cancer cells under the effect of anti-cancer drug was investigated. It shows that with the increase of anti-cancer drug concentration from 1 to 15 µM and the extension of drug action duration from 24 to 72 h, the Δf changes from 140 to 70 GHz and 140-40 GHz, respectively. Besides, the corresponding FWHM also increases from 237.9 to 305.4 GHz and 237.8-337.6 GHz. The results measured by MMs biosensors and biological method exhibit a relatively good agreement, showing a great potential for cells measurement with the sensitive biosensors based on the EIT-like MMs.


Assuntos
Técnicas Biossensoriais , Neoplasias Bucais/diagnóstico , Ressonância de Plasmônio de Superfície/métodos , Campos Eletromagnéticos , Humanos , Neoplasias Bucais/patologia , Refratometria , Espalhamento de Radiação
17.
Sci Rep ; 6: 39252, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982089

RESUMO

A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than -10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices.

18.
Bioresour Technol ; 203: 112-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26722810

RESUMO

Efficient algal harvesting, cell pretreatment and lipid extraction are the major steps challenging the algal biofuel industrialization. To develop sustainable solutions for economically viable algal biofuels, our research aims at devising innovative reactive electrochemical membrane (REM) filtration systems for simultaneous algal harvesting and pretreatment for lipid extraction. The results in this work particularly demonstrated the use of the Ti4O7-based REM in algal pretreatment and the positive impacts on lipid extraction. After REM treatment, algal cells exhibited significant disruption in morphology and photosynthetic activity due to the anodic oxidation. Cell lysis was evidenced by the changes of fluorescent patterns of dissolved organic matter (DOM) in the treated algal suspension. The lipid extraction efficiency increased from 15.2 ± 0.6 g-lipidg-algae(-1) for untreated algae to 23.4 ± 0.7 g-lipidg-algae(-1) for treated algae (p<0.05), which highlights the potential to couple algal harvesting with cell pretreatment in an integrated REM filtration process.


Assuntos
Biocombustíveis , Técnicas Eletroquímicas , Lipídeos/isolamento & purificação , Scenedesmus/química , Titânio/química , Eletrodos , Filtração , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa