Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Drug Resist Updat ; 68: 100935, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36774747

RESUMO

To develop next-generation nanomedicine, theranostic nanotherapeutic strategies are increasingly being emphasized. In recent years, it is observed that the effective lifetime of anti-bacterial and anti-cancer agent is diminishing, which undermines the economic incentives necessary for clinical development and therapeutic applications. Thus, novel formulations ought to not only kill drug resistant strains and cancerous cells but also inhibit their formation. Recently, metallic nanoparticles [for example- silver (Ag) nanoparticles] have been widely investigated for their biomedical applications. The so-called applications necessitate the inclusion of these nanoparticles inside polymeric matrices (for example- dendrimer) leading to chemical functionalization of the metallic nanoparticles. Silver and silver nanoparticles' antibacterial activity has already been well established over years. Dendrimers due to their homogeneous highly branched structure and uniform composition are perfectly suitable for the inclusion of silver nanoparticles [Ag NPs]. Recently, the increasing trend in the development of Ag-dendrimer nanocomposites is attributed to the excellent antibacterial activity of Ag as well as dendrimer's unique properties like variable functional terminal ends and potential antibacterial effect necessarily. This review provides an informative overview regarding the numerous aspects of bactericidal and other biomedical applications of Ag-dendrimer nanocomposites, particularly emphasizing analysis of existing research and prospective worth to the pharmaceutical sector in future.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Nanocompostos , Humanos , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Estudos Prospectivos , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
2.
Drug Resist Updat ; 66: 100907, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527888

RESUMO

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistência a Medicamentos , Imunoterapia , Microambiente Tumoral
3.
Mol Cancer ; 21(1): 75, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296335

RESUMO

BACKGROUND: Histone lysine-specific demethylase 1 (LSD1) expression has been shown to be significantly elevated in gastric cancer (GC) and may be associated with the proliferation and metastasis of GC. It has been reported that LSD1 repressed tumor immunity through programmed cell death 1 ligand 1 (PD-L1) in melanoma and breast cancer. The role of LSD1 in the immune microenvironment of GC is unknown. METHODS: Expression LSD1 and PD-L1 in GC patients was analyzed by immunohistochemical (IHC) and Western blotting. Exosomes were isolated from the culture medium of GC cells using an ultracentrifugation method and characterized by transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), sucrose gradient centrifugation, and Western blotting. The role of exosomal PD-L1 in T-cell dysfunction was assessed by flow cytometry, T-cell killing and enzyme-linked immunosorbent assay (ELISA). RESULTS: Through in vivo exploration, mouse forestomach carcinoma (MFC) cells with LSD1 knockout (KO) showed significantly slow growth in 615 mice than T-cell-deficient BALB/c nude mice. Meanwhile, in GC specimens, expression of LSD1 was negatively correlated with that of CD8 and positively correlated with that of PD-L1. Further study showed that LSD1 inhibited the response of T cells in the microenvironment of GC by inducing the accumulation of PD-L1 in exosomes, while the membrane PD-L1 stayed constant in GC cells. Using exosomes as vehicles, LSD1 also obstructed T-cell response of other cancer cells while LSD1 deletion rescued T-cell function. It was found that while relying on the existence of LSD1 in donor cells, exosomes can regulate MFC cells proliferation with distinct roles depending on exosomal PD-L1-mediated T-cell immunity in vivo. CONCLUSION: LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in GC; this finding indicates a new mechanism with which LSD1 may regulate cancer immunity in GC and provides a new target for immunotherapy against GC.


Assuntos
Antígeno B7-H1 , Neoplasias Gástricas , Animais , Histona Desmetilases/genética , Humanos , Camundongos , Camundongos Nus , Neoplasias Gástricas/genética , Linfócitos T , Microambiente Tumoral
4.
Anal Bioanal Chem ; 414(27): 7923-7933, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36136111

RESUMO

The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K+ or Na+. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL-1, and the detection limit of 0.0021 U mL-1 could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Bacteriófago T4/metabolismo , Benzotiazóis , DNA/química , DNA Ligases , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Espectrometria de Fluorescência
5.
Exp Cell Res ; 388(2): 111858, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972220

RESUMO

Pevonedistat is a potent, selective, first-in-class NEDD8 activating enzyme inhibitor. It is now under multiple clinical trials that investigate its anticancer effect against solid tumors and leukemia. ATP-binding cassette (ABC) transporters are membrane proteins that are involved in mediating multidrug resistance (MDR). In this article, we reveal that pevonedistat is a substrate of ABCG2 which decreases the therapeutic effect of pevonedistat. The cytotoxicity of pevonedistat was significantly weakened in ABCG2-overexpressing cells, and the drug resistance can be reversed by ABCG2 inhibitors. The ATPase assay suggested that pevonedistat can stimulate ABCG2 ATPase activity in a concentration-dependent manner. Pevonedistat showed little effect on the expression level or subcellular localization of ABCG2 after 72 h treatment. Furthermore, a pevonedistat resistance cell line S1-PR was established and overexpressed ABCG2. Generally, our study provides evidence that ABCG2 can be a prominent factor leading to pevonedistat-resistance. Furthermore, ABCG2 may also be utilized as a biomarker to monitor the development of pevonedistat resistance during cancer treatment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ciclopentanos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
6.
Drug Resist Updat ; 48: 100663, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785545

RESUMO

Drug resistance is a major obstacle in the field of pre-clinical and clinical therapeutics. The development of novel technologies and targeted therapies have yielded new modalities to overcome drug resistance, but multidrug resistance (MDR) remains one of the major challenges in the treatment of cancer. The ubiquitin-proteasome system (UPS) has a central role in regulating the levels and activities of a multitude of proteins as well as regulation of cell cycle, gene expression, response to oxidative stress, cell survival, cell proliferation and apoptosis. Therefore, inhibition of the UPS could represent a novel strategy for the treatment and overcoming of drug resistance in chemoresistant malignancies. In 2003, bortezomib was approved by the FDA for the treatment of multiple myeloma (MM). However, due to its limitations, second generation proteasome inhibitors (PIs) like carfilzomib, ixazomib, oprozomib, delanzomib and marizomib were introduced which displayed clinical activity in bortezomib-resistant tumors. Past studies have demonstrated that proteasome inhibition potentiates the anti-cancer efficacy of other chemotherapeutic drugs by: i) decreasing the expression of anti-apoptotic proteins such as TNF-α and NF-kB, ii) increasing the levels of Noxa, a pro-apoptotic protein, iii) activating caspases and inducing apoptosis, iv) degrading the pro-survival protein, induced myeloid leukemia cell differentiation protein (MCL1), and v) inhibiting drug efflux transporters. In addition, the mechanism of action of the immunoproteasome inhibitors, ONX-0914 and LU-102, suggested their therapeutic role in the combination treatment with PIs. In the current review, we discuss various PIs and their underlying mechanisms in surmounting anti-tumor drug resistance when used in combination with conventional chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
7.
Int J Cancer ; 146(2): 400-412, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31271662

RESUMO

Histone demethylases are promising therapeutic targets as they play fundamental roles for survival of Mixed lineage leukemia rearranged acute leukemia (MLLr AL). Here we focused on the catalytic Jumonji domain of histone H3 lysine 9 (H3K9) demethylase JMJD1C to screen for potential small molecular modulators from 149,519 natural products and 33,765 Chinese medicine components via virtual screening. JMJD1C Jumonji domain inhibitor 4 (JDI-4) and JDI-12 that share a common structural backbone were detected within the top 15 compounds. Surface plasmon resonance analysis showed that JDI-4 and JDI-12 bind to JMJD1C and its family homolog KDM3B with modest affinity. In vitro demethylation assays showed that JDI-4 can reverse the H3K9 demethylation conferred by KDM3B. In vivo demethylation assays indicated that JDI-4 and JDI-12 could induce the global increase of H3K9 methylation. Cell proliferation and colony formation assays documented that JDI-4 and JDI-12 kill MLLr AL and other malignant hematopoietic cells, but not leukemia cells resistant to JMJD1C depletion or cord blood cells. Furthermore, JDI-16, among multiple compounds structurally akin to JDI-4/JDI-12, exhibits superior killing activities against malignant hematopoietic cells compared to JDI-4/JDI-12. Mechanistically, JDI-16 not only induces apoptosis but also differentiation of MLLr AL cells. RNA sequencing and quantitative PCR showed that JDI-16 induced gene expression associated with cell metabolism; targeted metabolomics revealed that JDI-16 downregulates lactic acids, NADP+ and other metabolites. Moreover, JDI-16 collaborates with all-trans retinoic acid to repress MLLr AML cells. In summary, we identified bona fide JMJD1C inhibitors that induce preferential death of MLLr AL cells.


Assuntos
Antineoplásicos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Leucemia Aguda Bifenotípica/tratamento farmacológico , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Adulto , Idoso , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Medula Óssea/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desmetilação do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Aguda Bifenotípica/patologia , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Tretinoína/farmacologia , Tretinoína/uso terapêutico
8.
Anticancer Drugs ; 31(1): 60-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609768

RESUMO

Leucine aminopeptidase 3 is involved in the progression and metastasis of several cancers. This study aimed to screen anti-tumor lead compounds targeting leucine aminopeptidase 3. The compounds' suppression effect on enzyme activity and anti-tumor activity were evaluated through a series of assays. Leucine aminopeptidase 3 overexpression K562 cells were used as an enzyme source to screen 43 natural marine compounds. Compounds 5 and 6 exhibited high suppression effect on leucine aminopeptidase 3 activity. Cell activity tests indicated that both compounds have an anti-proliferative effect on triple-negative breast cancer cells. Wound healing assay and transwell invasion assay showed that both compounds could inhibit the migration and invasion of breast cancer cells. Immunoblot analysis exhibited that both compounds could downregulate the expression of metastasis-related proteins fascin and matrix metalloproteinase-2/9. A molecular dynamic simulation process was applied to discover the key features of compounds 5 and 6 in binding to leucine aminopeptidase 3 active site. This study described the anti-tumor effects of two leucine aminopeptidase 3 small molecule inhibitors. Taken together, compounds 5 and 6 could be used as anti-tumor lead compounds targeting leucine aminopeptidase 3.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Leucil Aminopeptidase/antagonistas & inibidores , Produtos Biológicos/química , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Humanos , Células K562 , Leucina/análogos & derivados , Leucina/farmacologia , Leucil Aminopeptidase/química , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Simulação de Acoplamento Molecular , Invasividade Neoplásica , Metástase Neoplásica
9.
Drug Resist Updat ; 41: 1-25, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30471641

RESUMO

The successful treatment of cancer has significantly improved as a result of targeted therapy and immunotherapy. However, during chemotherapy, cancer cells evolve and can acquire "multidrug resistance" (MDR), which significantly limits the efficacy of cancer treatment and impacts patient survival and quality of life. Among the approaches to reverse MDR, modulating reactive oxidative species (ROS) may represent a strategy to kill MDR cancer cells that are mechanistically diverse. ROS in cancer cells play a central role in regulating and inducing apoptosis, thereby modulating cancer cells proliferation, survival and drug resistance. The levels of ROS and the activity of scavenging/anti-oxidant enzymes in drug resistant cancer cells are typically increased compared to non-MDR cancer and normal cells. Consequently, MDR cancer cells may be more susceptible to alterations in ROS levels. Numerous studies suggest that compounds modulating cellular ROS levels can enhance MDR cancer cell death and sensitize MDR cancer cells to certain chemotherapeutic drugs. In the current review, we discuss the critical and targetable redox-regulating enzymes, including mitochondrial electron transport chain (ETC) complexes, NADPH oxidases (NOXs), enzymes related to glutathione metabolism, glutamate/cystine antiporter xCT, thioredoxin reductases (TrxRs), nuclear factor erythroid 2-related factor 2 (Nrf2), and their roles in regulating cellular ROS levels, drug resistance as well as their clinical significance. We also discuss and summarize the findings in the past decade regarding the efficacy of ROS modulators for the treatment of MDR cancer alone or as sensitizing compounds. Compounds that are efficacious in modulating ROS generation represent a prominent class of drug candidates that warrants evaluation in clinical trials for patients harboring MDR cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Qualidade de Vida
10.
Biopharm Drug Dispos ; 40(9): 341-349, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31693190

RESUMO

Antiretroviral therapy has been the mainstay of treatment for neonates born to HIV infected mothers. Neonates born prematurely to HIV positive mothers are underdeveloped not only in anatomical terms but also in their physiological systems. Zidovudine, the first antiretroviral drug in clinical therapy for the treatment of HIV has been approved for use in preterm neonates both prophylactically and therapeutically. The present work describes the whole body physiologically based pharmacokinetic (WB-PBPK) model development for zidovudine in preterm neonates of varying gestational ages, to observe the pharmacokinetic behavior of the drug in this vulnerable group of the population. Along with the height, weight, post-natal, and gestational ages of the preterm neonates, metabolic enzymes CYP2A6, CYP2C8, etc. were incorporated for each neonate. The composition of the different organs in terms of water and lipid components, blood flow rates, etc. were specified during simulations according to the gestational ages of these neonates. The following PK parameters were estimated for preterm neonates using simulated plasma profiles: AUC 2686.41 ± 123.49 µmol min/L, Cmax 6.46 ± 0.74 µmol/L, half-life 8.98 ± 2.36 hr, mean residence time 12.23 ± 3.43 hr, and total plasma clearance 1.48 ± 0.19 ml/min/kg in comparison with the observed PK parameters of a clinical study by Mirochknic et al. in preterm neonates with AUC 2020.04 µmol/min/L, Cmax 6.10 µmol/L, and total plasma clearance 1.62 ml/min/kg. PBPK simulations provide an opportunity to visualize the possible impact of physiological maturity levels at varying gestational ages on the pharmacokinetic behavior of zidovudine in preterm neonates.


Assuntos
Recém-Nascido Prematuro/metabolismo , Modelos Biológicos , Zidovudina/farmacocinética , Fármacos Anti-HIV/farmacocinética , Idade Gestacional , Humanos , Recém-Nascido
11.
Molecules ; 24(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527444

RESUMO

The purpose of this study was to characterize the polysaccharides from Athyrium multidentatum (Doll.) Ching (AMC) rhizome and explore the protective mechanism against d-galactose-induced oxidative stress in aging mice. METHODS: A series of experiments, including molecular weight, monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, and 1H nuclear magnetic resonance (1H NMR) spectroscopy were carried out to characterize AMC polysaccharides. The mechanism was investigated exploring d-galactose-induced aging mouse model. Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting assays were performed to assess the gene and protein expression in liver. KEY FINDINGS: Our results showed that AMC polysaccharides were mainly composed of mannose (Man), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galactose (Gal), arabinose (Ara), and fucose (Fuc) in a molar ratio of 0.077:0.088:0.09:1:0.375:0.354:0.04 with a molecular weight of 33203 Da (Mw). AMC polysaccharides strikingly reversed d-galactose-induced changes in mice, including upregulated phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor-erythroid 2-related factor 2 (Nrf2), forkhead box O3a (FOXO3a), and hemeoxygenase-1 (HO-1) mRNA expression, raised Bcl-2/Bax ratio, downregulated caspase-3 mRNA expression, enhanced Akt, phosphorylation of Akt (p-Akt), Nrf2 and HO-1 protein expression, decreased caspase-3, and Bax protein expression. CONCLUSION: AMC polysaccharides attenuated d-galactose-induced oxidative stress and cell apoptosis by activating the PI3K/AKT pathway, which might in part contributed to their anti-aging activity.


Assuntos
Antioxidantes/farmacologia , Gleiquênias/química , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Galactose/administração & dosagem , Espectroscopia de Ressonância Magnética , Camundongos , Monossacarídeos/química , Extratos Vegetais/química , Polissacarídeos/química
12.
BMC Genomics ; 16: 717, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26391348

RESUMO

BACKGROUND: Strains of extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize extraintestinal sites and cause a wide range of infections. Genomic analysis of ExPEC has mainly focused on isolates of human and avian origins, with porcine ExPEC isolates yet to be sequenced. To better understand the genomic attributes underlying the pathogenicity of porcine ExPEC, we isolated two E. coli strains PCN033 and PCN061 from pigs, assessed their in vivo virulence, and completed and compared their genomes. RESULTS: Animal experiments demonstrated that strain PCN033, but not PCN061, was pathogenic in a pig model. The chromosome of PCN033 was 384 kb larger than that of PCN061. Among the PCN033-specific sequences, genes encoding adhesins, unique lipopolysaccharide, unique capsular polysaccharide, iron acquisition and transport systems, and metabolism were identified. Additionally, a large plasmid PCN033p3 harboring many typical ExPEC virulence factors was identified in PCN033. Based on the genetic variation between PCN033 and PCN061, corresponding phenotypic differences in flagellum-dependent swarming motility and metabolism were verified. Furthermore, the comparative genomic analyses showed that the PCN033 genome shared many similarities with genomic sequences of human ExPEC strains. Additionally, comparison of PCN033 genome with other nine characteristic E. coli genomes revealed 425 PCN033-special coding sequences. Genes of this subset included those encoding type I restriction-modification (R-M) system, type VI secretion system (T6SS) and membrane-associated proteins. CONCLUSIONS: The genetic and phenotypic differences between PCN033 and PCN061 could partially explain their differences in virulence, and also provide insight towards the molecular mechanisms of porcine ExPEC infections. Additionally, the similarities between the genomes of PCN033 and human ExPEC strains suggest that some connections between porcine and human ExPEC strains exist. The first completed genomic sequence for porcine ExPEC and the genomic differences identified by comparative analyses provide a baseline understanding of porcine ExPEC genetics and lay the foundation for their further study.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/patogenicidade , Genoma Bacteriano , Genômica , Doenças dos Suínos/microbiologia , Animais , Sistemas de Secreção Bacterianos , Elementos de DNA Transponíveis , Escherichia coli/classificação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ordem dos Genes , Genômica/métodos , Lipopolissacarídeos/biossíntese , Redes e Vias Metabólicas , Dados de Sequência Molecular , Filogenia , Suínos , Doenças dos Suínos/mortalidade , Virulência/genética , Fatores de Virulência/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-38204268

RESUMO

BACKGROUND: Chromosomal rearrangements involving the Mixed lineage leukemia (MLL) gene are observed in acute leukemia (AL) patients, which have poor prognosis, especially in infants. Hence, there is still a challenge to develop other effective agents to treat AL with MLL rearrangements (MLLr). MLL has been shown to rearrange with partner genes, of which the most frequently observed are AF4 and AF9. Moreover, AL is characterized by a differentiation blockage resulting in the accumulation of immature cells. An ent-kaurene diterpenoid compound, Jiyuan Oridonin A (JOA), has been shown to reduce the viability of AML cells by differentiation. METHODS: We aimed to evaluate the effect of JOA on the growth and differentiation of AL cells (SEM, JURKAT and MV4-11) including cells with MLLr-AF4 by cell proliferation assay, colony formation assay, cell cycle analysis, cell apoptosis analysis, measurement of cell surface antigens, cell morphology, mRNA-sequencing analysis, quantitative Real-time PCR and Western blotting analysis. RESULTS: Our findings demonstrated that the proliferation of AL cells including cells with MLLr-AF4 was significantly suppressed by JOA, which induced cell differentiation followed by G0/G1 cell cycle withdrawal. Moreover, JOA-mediated cell differentiation was likely due to activation of G-CSFR in MV4-11 cells. CONCLUSION: Our results suggest that JOA may be considered a promising anti-leukemia compound to develop to surmount the differentiation block in AL patients.

14.
Adv Sci (Weinh) ; : e2307765, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898730

RESUMO

Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.

15.
Front Pharmacol ; 14: 1183052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124196

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis. In this work, we assessed the effect of a potent histone deacetylase (HDAC) inhibitor, I13, on the differentiation blockade in CML cells harboring T315I-mutated and wild-type BCR-ABL by MTT assay, flow cytometery, cell colony formation assay, mRNA Sequencing, Quantitative real-time PCR and Western blotting analysis. We found that I13 possessed highly potent activity against T315I-mutated BCR-ABL mutant-expressing cells and wild-type BCR-ABL-expressing cells. I13 induced cell differentiation and significantly suppressed the proliferation of these CML cells via the cell cycle G0/G1-phase accumulation. Moreover, it was revealed that I13 triggered the differentiation of BaF3-T315I cells, which was attributed to the block of the chronic myeloid leukemia signaling pathway via the depletion of BCR-ABL that was mediated by the inhibition of HDAC activity presented by the acetylation of histones H3 and H4. Taken together, I13 efficiently depleted BCR-ABL in CML cells expressing the BCR-ABL-T315I mutation, which blocked its function, serving as a scaffold protein that modulated the chronic myeloid leukemia signaling pathway mediating cell differentiation. The present findings demonstrate that I13 is a BCR-ABL modulator for the development of CML therapy that can override resistance caused by T315I-mutated BCR-ABL.

16.
Biomater Adv ; 154: 213662, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862813

RESUMO

Developing antibiotic-free treatment strategies to cope with the crisis on drug-resistant bacteria, are urgently needed. Antibiotics-independent physical approaches, especially the non-invasive phototherapies, worked through the assistance of photosensitizer (PS), have geared intensive attention and interests. Here, composite porphyrin-based conjugated microporous polymer/graphene oxide, denoted as GO-TAPP, combining the advantages of each component perfectly, was developed as broad-spectrum antibacterial agent. GO-TAPP, prepared via the self-oxidation coupling of tetraethynyl porphyrin on the surface of graphene oxide, could exert synergistic photothermal (PTT, ascribed to the graphene) and photodynamic (PDT, derived from the Porphyrin polymer) antimicrobial effectiveness. Both the in vivo and in vitro experiments have confirmed GO-TAPP are extremely potent against the Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) pathogens, which presents a remarkably enhanced sterilizing effect in comparison with its counterparts (the bare GO, and TAPP). Meanwhile, the synergistic effect of GO-TAPP could significantly accelerate the healing of open wound infected by bacterial. Altogether, this work proposed a new approach for the rational preparation of highly biocompatible graphene-based composite materials as antibiotic-free agents with synergistic antibacterial effect to combat bacterial infections.


Assuntos
Grafite , Porfirinas , Grafite/farmacologia , Porfirinas/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Cicatrização
17.
Front Pharmacol ; 14: 1232787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576814

RESUMO

The FDA granted orphan drug designation to darovasertib, a first-in-class oral, small molecular inhibitor of protein kinase C (PKC), for the treatment of uveal melanoma, on 2 May 2022. Primary uveal melanoma has a high risk of progressing to metastatic uveal melanoma, with a poor prognosis. The activation of the PKC and mitogen-activated protein kinase pathways play an essential role in the pathogenesis of uveal melanoma, and mutations in the G protein subunit alpha q (GNAQ), and G protein subunit alpha11 (GNA11) genes are considered early events in the development of uveal melanoma. Compared to other PKC inhibitors, such as sotrastaurin and enzastaurin, darovasertib is significantly more potent in inhibiting conventional (α, ß) and novel (δ, ϵ, η, θ) PKC proteins and has a better tolerability and safety profile. Current Phase I/II clinical trials indicated that darovasertib, combined with the Mitogen-activated protein kinase/Extracellular (MEK) inhibitors, binimetinib or crizotinib, produced a synergistic effect of uveal melanoma. In this article, we summarize the development of drugs for treating uveal melanomas and discuss problems associated with current treatments. We also discuss the mechanism of action, pharmacokinetic profile, adverse effects, and clinical trial for darovasertib, and future research directions for treating uveal melanoma.

18.
J Cancer ; 14(7): 1182-1194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215441

RESUMO

Chronic myeloid leukemia (CML) results from BCR-ABL oncogene, which blocks CML cells differentiation and protects these cells from apoptosis. T315I mutated BCR-ABL is the main cause of the resistance mediated by imatinib and second generation BCR-ABL inhibitor. CML with the T315I mutation has been considered to have poor prognosis. Here, we determined the effect of Jiyuan oridonin A (JOA), an ent-kaurene diterpenoid compound, on the differentiation blockade in imatinib-sensitive, particularly, imatinib-resistant CML cells with BCR-ABL-T315I mutation by cell proliferation assay, apoptosis analysis, cell differentiation analysis, cell cycle analysis and colony formation assay. We also investigated the possible molecular mechanism by mRNA sequencing, qRT-PCR and Western blotting. We found that JOA at lower concentration significantly inhibited the proliferation of CML cells expressing mutant BCR-ABL (T315I mutation included) and wild-type BCR-ABL, which was due to that JOA induced the cell differentiation and the cell cycle arrest at G0/G1 phase. Interestingly, JOA possessed stronger anti-leukemia activity than its analogues such as OGP46 and Oridonin, which has been investigated extensively. Mechanistically, the cell differentiation mediated by JOA may be originated from the inhibition of BCR-ABL/c-MYC signaling in CML cells expressing wild-type BCR-ABL and BCR-ABL-T315I. JOA displayed the activity of inhibiting the BCR-ABL and promoted differentiation of not only imatinib -sensitive but also imatinib -resistant cells with BCR-ABL mutation, which could become a potent lead compound to overcome the imatinib -resistant induced by inhibitors of BCR-ABL tyrosine kinase in CML therapy.

19.
Front Chem ; 10: 880067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433629

RESUMO

In discovery of novel SIRT3 inhibitors for the treatment of cancer, a series of 2-(4-acrylamidophenyl)-quinoline-4-carboxylic acid derivatives were designed and synthesized. Among the derived compounds, molecule P6 exhibited SIRT3 inhibitory selectivity with IC50 value of 7.2 µM over SIRT1 (32.6 µM) and SIRT2 (33.5 µM). molecular docking analysis revealed a specific binding pattern of P6 in the active site of SIRT3 compared with the bindings in the active site of SIRT1 and SIRT2. In the antiproliferative and colony forming assay, molecule P6 showed potent inhibitory activity against a group of MLLr leukemic cell lines. Further analysis revealed that induction of G0/G1 phase cell cycle arrest and cell differentiation, but not apoptosis, makes contributions to the anticancer effects of P6. Collectively, a potent SIRT3 inhibitor (P6) was discovered as a lead compound for the leukemic differentiation therapy.

20.
Front Pharmacol ; 13: 876076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571127

RESUMO

Acute leukemia (AL) is characterized by excessive proliferation and impaired differentiation of leukemic cells. AL includes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Previous studies have demonstrated that about 10% of AML and 22% of ALL are mixed lineage leukemia gene rearrangements (MLLr) leukemia. The prognosis of MLLr leukemia is poor and new therapeutics are urgently needed. Differentiation therapy with all-trans-retinoic acid (ATRA) has prolonged the 5-years disease-free survival rate in acute promyelocytic leukemia (APL), a subtype of AML. However, the differentiation therapy has not been effective in other acute leukemia. Here, we aim to explore the cell differentiation effect of the potent HDACs inhibitor, I1, and the possible mechanism on the MLLr-AML and MLLr-ALL cells (MOLM-13, THP-1, MV4-11 and SEM). It is shown that I1 can significantly inhibit the proliferation and the colony-forming ability of MOLM-13, THP-1, MV4-11 and SEM cells by promoting cell differentiation coupled with cell cycle block at G0/G1 phase. We show that the anti-proliferative effect of I1 attributed to cell differentiation is most likely associated with the HDAC inhibition activity, as assessed by the acetylation of histone H3 and H4, which may dictates the activation of hematopoietic cell lineage pathway in both MOLM-13 and THP-1 cell lines. Moreover, the activity of HDAC inhibition of I1 is stronger than that of SAHA in MOLM-13 and THP-1 cells. Our findings suggest that I1, as a chromatin-remodeling agent, could be a potent epigenetic drug to overcome differentiation block in MLLr-AL patients and would be promising for the treatment of AL.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa