RESUMO
As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.
Assuntos
MicroRNAs , Zearalenona , Animais , Feminino , Zearalenona/metabolismo , Zearalenona/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/metabolismo , Cabras/metabolismo , Estresse Oxidativo , Transdução de SinaisRESUMO
Carbon is the crucial source of energy during aerobic composting. There are few studies that explore carbon preservation by inoculation with microbial agents during goat manure composting. Hence, this study inoculated three proportions of microbial agents to investigate the preservation of carbon during goat manure composting. The microbial inoculums were composed of Bacillus subtilis, Bacillus licheniformis, Trichoderma viride, Aspergillus niger, and yeast, and the proportions were B1 treatment (1:1:1:1:2), B2 treatment (2:2:1:1:2), and B3 treatment (3:3:1:1:2). The results showed that the contents of total organic carbon were enriched by 12.21%, 4.87%, and 1.90% in B1 treatment, B2 treatment, and B3 treatment, respectively. The total organic carbon contents of B1 treatment, B2 treatment, and B3 treatment were 402.00 ± 2.65, 366.33 ± 1.53, and 378.33 ± 2.08 g/kg, respectively. B1 treatment significantly increased the content of total organic carbon compared with the other two treatments (p < 0.05). Moreover, the ratio of 1:1:1:1:2 significantly reduced the moisture content, pH value, EC value, hemicellulose, and lignin contents (p < 0.05), and significantly increased the GI value and the content of humic acid carbon (p < 0.05). Consequently, the preservation of carbon might be a result not only of the enrichment of the humic acid carbon and the decomposition of hemicellulose and lignin, but also the increased OTU amount and Lactobacillus abundance. This result provided a ratio of microbial agents to preserve the carbon during goat manure aerobic composting.
Assuntos
Inoculantes Agrícolas/metabolismo , Carbono/metabolismo , Compostagem/métodos , Esterco/microbiologia , Animais , Cabras , Substâncias HúmicasRESUMO
Numerous studies have demonstrated that under low-velocity, low-energy impact conditions, although the surface damage to fiber-reinforced composite laminates may be minimal, significant internal damage can occur. Consequently, a progressive damage finite element model was specifically developed for thermoplastic carbon fiber-reinforced composite laminates subjected to low-speed impact loads, with the objective of analyzing the damage behavior of laminates under impacts of varying energy levels. The model utilizes a three-dimensional Hashin criterion for predicting intralayer damage initiation, with cohesive elements based on bilinear traction-separation law for predicting interlaminar delamination initiation, and incorporates a damage constitutive model based on equivalent displacement to characterize fiber damage evolution, along with the B-K criterion for interlaminar damage evolution. The impact response of laminates at energy levels of 5 J, 10 J, 15 J, 20 J, and 25 J was analyzed through numerical simulation, drop-hammer experiments, and XCT non-destructive testing. The results indicated that the simulation outcomes closely correspond with the experimental findings, with both the predicted peak error and absorbed energy error maintained within a 5% margin, and the trends of the mechanical response curves aligning closely with the experimental data. The damage patterns predicted by the numerical simulations were consistent with the results obtained from XCT scans. The study additionally revealed that the impact damage of the laminates primarily stems from interlaminar delamination and intralayer tensile failure. Initial damage typically presents as internal delamination; hence, enhancing interlaminar bonding performance can significantly augment the overall load-bearing capacity of the laminate.
RESUMO
The anterior pituitary plays a critical role in the endocrine system, contains gonadotrophs, which regulate reproductive efficiency by secreting follicle-stimulating hormone (FSH) and luteinizing hormone (LH). PPP2R2A is a serine-threonine phosphatase that regulates reproductive functions in both females and males, its function in pituitary cells remain unclear. Hu sheep is a highly prolific breed, which makes it suitable for studying reproductive mechanisms. In this study, the relative abundances of PPP2R2A mRNA expression were higher in the pituitary of high-prolificacy (HF) Hu sheep compared to those of low-prolificacy (LF) Hu sheep. Additionally, we demonstrated that PPP2R2A promotes pituitary cell proliferation and gonadotropin secretion using the EdU assay and ELISA, respectively. Moreover, it inhibits pituitary cell apoptosis using flow cytometry. Furthermore, PPP2R2A may affect pituitary cell function by regulating the AKT/mTOR signaling pathway. In summary, our findings suggest that PPP2R2A may play a role in regulating pituitary function and influencing the secretion of gonadotropins.
Assuntos
Proliferação de Células , Hipófise , Proteína Fosfatase 2 , Animais , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Ovinos/fisiologia , Hipófise/metabolismo , Hipófise/citologia , Feminino , Proliferação de Células/fisiologia , Gonadotropinas/metabolismo , Masculino , Regulação da Expressão Gênica/fisiologiaRESUMO
This study was conducted to investigate the effects of feeding regimens and dietary Trp levels on protein metabolism and regulation of the related gene expression in Yangzhou goslings. A 2 × 3 factorial completely randomized experiment was applied, and the treatments were designed as 2 feeding regimens (ad libitum vs. restricted feeding), and each contained 3 levels of Trp (low-Trp group, 0.14%; medium-Trp group, 0.22%; high-Trp group, 0.30%). The results show that ADG and feed conversion ratio (FCR) were significantly affected by feeding regimens (P < 0.05); dietary Trp levels influenced ADG and ADFI in the starter and overall period (P < 0.05), and interactions between Trp levels and feeding regimens on ADG, ADFI, and FCR were observed in different growing periods (P < 0.05). Serum total protein, triglycerides, and total cholesterol levels in the ad libitum group were higher than those in the restricted feeding group (P < 0.05), and the concentration of serum total protein, glucose, and insulin-like growth factor-I were higher in the medium-Trp and high-Trp groups (P < 0.05); however, serum uric acid, triglyceride, and cortisol levels were reduced in the high-Trp group (P < 0.05). Feeding regimen and dietary Trp levels affected serum glucose (P < 0.05) interactively. In the ad libitum group, tryptophanyl tRNA synthetase (TTS) mRNA expressed at a higher level in the high-Trp treatment, whereas expression of poultry target of rapamycin (pTOR) and p70 ribosomal protein S6 kinase1 (S6K1) mRNA was upregulated in the low-Trp treatment (P < 0.05). Expression and phosphorylation levels of pTOR were upregulated in thigh tissue with increased dietary Trp, but cathepsin B and 20S protease mRNA expression decreased (P < 0.05). It was concluded that the protein deposition in gosling thigh tissue was affected by dietary Trp through positive regulation of the TTS mRNA and pTOR protein expression and phosphorylation levels for protein synthesis, as well as the suppression of protein degradation-related gene expression.
Assuntos
Proteínas Alimentares/metabolismo , Metabolismo Energético , Comportamento Alimentar , Gansos/fisiologia , Regulação da Expressão Gênica , Triptofano/administração & dosagem , Ração Animal/análise , Animais , Western Blotting/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Gansos/genética , Gansos/crescimento & desenvolvimento , Masculino , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/veterináriaRESUMO
Zearalenone (ZEA), also known as F-2 toxin, is a mycotoxin. Despite numerous reports of ZEA impairing livestock production performance and fertility, little information is available, including information about the mechanism underlying damage to cell metal ion transport. Copper, which is essential for cell survival as a metal ion, can consist of a variety of enzymes that facilitate abundant metabolic processes. However, the accumulation of copper in cells can have toxic effects. Here, we intended to determine whether ZEA could impair goat granulosa cells (GCs) and alter the cellular copper concentration. GCs were divided into a negative control (NC) group (cells cultured with 0.1% dimethyl sulfoxide (DMSO) for 8 h) and a ZEA group (cells cultured with 200 µmol/L ZEA diluted in DMSO for 8 h). The results showed that ZEA could inhibit GC proliferation and impair cell viability. GCs showed significant increases in the apoptosis rate and oxidative stress levels, while their ability to synthesize estrogen decreased. In addition, RNA-seq results showed dramatic changes in the expression of copper transport-related genes. The expression levels of ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B) were significantly downregulated (p < 0.01), while the expression of solute carrier family 31 member 1 (SLC31A1) was not modified in the ZEA group compared with the NC group. In accordance with these trends, the copper concentration increased significantly in the ZEA group (p < 0.01). In summary, our results show that ZEA can negatively affect GCs and cause copper accumulation. This finding may provide a prospective line of research on the relationship between ZEA and the transport of copper ions in GCs.
RESUMO
HT-2 toxin is a mycotoxin commonly found in food and water that can have adverse effects on male reproductive systems, including testosterone secretion. Ferroptosis and apoptosis are two types of programmed cell death that have been implicated in the regulation of cellular functions. Melatonin, a powerful antioxidant with various physiological functions, has been shown to regulate testosterone secretion. However, the mechanisms underlying the protective effects of melatonin against HT-2 toxin-induced damage in testosterone secretion are not fully understood. In this study, we investigated the effects of HT-2 toxin on sheep Leydig cells and the potential protective role of melatonin. We found that HT-2 toxin inhibited cell proliferation and testosterone secretion of Leydig cells in a dose-dependent manner and induced ferroptosis and apoptosis through intracellular reactive oxygen species accumulation, leading to lipid peroxidation. Exposure of Leydig cells to melatonin in vitro reversed the defective phenotypes caused by HT-2 toxin via a glucose-6-phosphate dehydrogenase/glutathione-dependent mechanism. Interference of glucose-6-phosphate dehydrogenase disrupted the beneficial effect of melatonin on ferroptosis and apoptosis in HT-2 toxin-treated Leydig cells. Furthermore, similar results were observed in vivo in the testes of male mice injected with HT-2 toxin with or without melatonin treatment for 30 days. Our findings suggest that melatonin inhibits ferroptosis and apoptosis by elevating the expression of glucose-6-phosphate dehydrogenase to eliminate reactive oxygen species accumulation in HT-2 toxin-treated Leydig cells. These results provide fundamental evidence for eliminating the adverse effects of HT-2 toxin on male reproduction.
Assuntos
Ferroptose , Melatonina , Masculino , Camundongos , Animais , Ovinos , Células Intersticiais do Testículo , Melatonina/farmacologia , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/farmacologia , Apoptose , Glutationa/metabolismo , Testosterona/farmacologiaRESUMO
Introduction: This study aims to investigate the long-term effects of spirulina supplementation in a high-fat diet (HFD) on rumen morphology, rumen fermentation, and the composition of rumen microbiota in lambs. Spirulina is a blue-green microalgae that has been shown to have high nutritional value for livestock. Methods: Fifty-four lambs were randomly divided into three groups: a normal chow diet (NCD) group, a high-fat diet (HFD) group, and a high-fat diet supplemented with 3% spirulina (HFD+S) group. Rumen morphology, rumen fermentation, and rumen microbiota were analyzed at the end of the study. Results: Spirulina supplementation improved the concentration of volatile fatty acids and rumen papilla length. Additionally, there was a tendency for an increase in rumen weight and an upregulation of the genes Claudin-1, Claudin-4, and Occludin in the HFD+S group. Pyrosequencing of the 16S ribosomal RNA gene also showed that spirulina supplementation significantly changed the rumen microbiota composition in the HFD group, with a decrease in richness and diversity. Specifically, the relative abundance of Prevotella 9 and Megasphaera was significantly increased in the HFD group compared to the NCD group, while spirulina supplementation reversed these changes. Discussion: This study suggests that 3% spirulina supplementation can improve rumen development and fermentation, and effectively relieve rumen microbe disorders in lambs caused by a high-fat diet. However, further research is needed to confirm the findings and to examine the long-term effects of spirulina supplementation in different types of livestock and under different dietary conditions.
RESUMO
Male germ cells directly affect the reproduction of males; however, their accurate isolation and culture in vitro is extremely challenging, hindering the study of germ cell development and function. CRISPR/dcas9, as an efficient gene reprogramming system, has been verified to promote the transdifferentiation of pluripotent stem cells into male germ cells by editing target genes. In our research, we explored the expression pattern of the germ cell related genes bmp4, dazl,nanos3 and sycp2 in Hu sheep testicular development and constructed the overexpression model using the CRISPR/dcas9 system. The results indicated that four genes showed more expression in testis tissue than in other tissues, and that bmp4, dazl and sycp2 present higher expression levels in nine-month-old sheep testes than in three-month-olds, while nanos3 expressed the opposite trend (p < 0.05). In addition, the expression of four potential genes in spermatogenic cells was slightly different, but they were all expressed in sheep Leydig cells. To verify the potential roles of the four genes in the process of inducing differentiation of male germ cells, we performed cell transfection in vitro. We found that the expression of the germ cell related genes Prdm1, Prdm14, Mvh and Sox17 were significantly increased after the overexpression of the four genes in Leydig cells, and the co-transfection effect was the most significant (p < 0.05). Our results illustrate the crucial functions of bmp4, dazl, nanos3 and sycp2 in Hu sheep testis development and verified the effectiveness of the overexpression model that was constructed using the CRISPR/dcas9 system, which provided a basis for further male germ cell differentiation in vitro.
RESUMO
DNA methylation plays an important role in biological processes by affecting gene expression. However, how DNA methylation regulates phenotypic variation in Hu sheep remains unclear. Therefore, we generated genome-wide DNA methylation and transcriptomic profiles in the ovaries of Hu sheep with different prolificacies and genotypes (FecBB and FecB+). Results showed that ovary DNA methylome and transcriptome were significantly different between high prolificacy and low prolificacy Hu sheep. Comparative methylome analyses identified 10,644, 9,594, and 12,214 differentially methylated regions and 87, 1,121, and 2,375 genes, respectively, showing differential expression levels in three different comparison groups. Female reproduction-associated differentially methylated regions-related genes and differentially expressed genes were enriched, thereby the respective interaction networks were constructed. Furthermore, systematical integrative analyses revealed a negative correlation between DNA methylation around the transcriptional start site and gene expression levels, which was confirmed by testing the expression of integrin ß2 subunit (ITGB2) and lysosome-associated protein transmembrane-4 beta (LAPTM4B) in vivo and in vitro. These findings demonstrated that DNA methylation influences the propensity for prolificacy by affecting gene expression in the ovaries, which may contribute to a greater understanding of the epigenome and transcriptome that will be useful for animal breeding.
RESUMO
Long non-coding RNAs (lncRNAs) play an important regulatory role in mammalian fecundity. Currently, most studies are primarily concentrated on ovarian lncRNAs, ignoring the influence of uterine lncRNAs on the fecundity of female sheep. In this study, we found a higher density of uterine glands and endometrial microvessel density (MVD) in high prolificacy group of Hu sheep compared to low prolificacy groups (p < 0.05) as well as an increased level of serum placental growth factor (PLGF). Hundreds of differentially expressed (DE) lncRNAs were identified in Hu sheep with different fecundity by RNA sequencing (RNA-seq), and their targets were enriched in some signaling pathways involved in endometrial functions, such as the estrogen signaling pathway, nuclear factor kappa B (NF-κB) signaling pathway, oxytocin signaling pathway, and Wnt signaling pathway. Furthermore, the underlying mechanisms of competitive endogenous RNA (ceRNA) of lncRNA366.2-miR-1576- WNT6 were determined by bioinformatics analysis. Functionally, our results indicated that lncRNA366.2 promoted endometrial epithelial cell (EEC) proliferation, migration, and growth factor expression by sponging miR-1576 to upregulate WNT6 expression and activate the Wnt/ß-catenin pathway. Taken together, our research indicated the regulatory mechanism of the lncRNA366.2-miR-1576-WNT6 in EEC proliferation and migration. Furthermore, this study provides a new theoretical reference for the identification of candidate genes related to fecundity.