Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(5): 565-582, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744467

RESUMO

BACKGROUND: In the past years, several studies investigated how distinct immune cell subsets affects post-myocardial infarction repair. However, whether and how the tissue environment controls these local immune responses has remained poorly understood. We sought to investigate how antigen-specific T-helper cells differentiate under myocardial milieu's influence. METHODS: We used a transgenic T cell receptor (TCR-M) model and major histocompatibility complex-II tetramers, both myosin-specific, combined with single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and functional phenotyping to elucidate how the antigen-specific CD4+ T cells differentiate in the murine infarcted myocardium and influence tissue repair. Additionally, we transferred proinflammatory versus regulatory predifferentiated TCR-M-cells to dissect how they specially contribute to post-myocardial infarction inflammation. RESULTS: Flow cytometry and scRNA-/TCR-seq analyses revealed that transferred TCR-M cells acquired an induced regulatory phenotype (induced regulatory T cell) in the infarcted myocardium and blunted local inflammation. Myocardial TCR-M cells differentiated into 2 main lineages enriched with either cell activation and profibrotic transcripts (eg, Tgfb1) or suppressor immune checkpoints (eg, Pdcd1), which we also found in human myocardial tissue. These cells produced high levels of LAP (latency-associated peptide) and inhibited IL-17 (interleukin-17) responses. Endogenous myosin-specific T-helper cells, identified using genetically barcoded tetramers, also accumulated in infarcted hearts and exhibited a regulatory phenotype. Notably, TCR-M cells that were predifferentiated toward a regulatory phenotype in vitro maintained stable in vivo FOXP3 (Forkhead box P3) expression and anti-inflammatory activity whereas TH17 partially converted toward a regulatory phenotype in the injured myocardium. Overall, the myosin-specific Tregs dampened post-myocardial infarction inflammation, suppressed neighboring T cells, and were associated with improved cardiac function. CONCLUSIONS: These findings provide novel evidence that the heart and its draining lymph nodes actively shape local immune responses by promoting the differentiation of antigen-specific Tregs poised with suppressive function.


Assuntos
Infarto do Miocárdio , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Miocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Antígenos/metabolismo , Diferenciação Celular , Miosinas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Inflamação/metabolismo , Fatores de Transcrição Forkhead/genética
2.
Front Immunol ; 13: 914033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693830

RESUMO

The immune system plays a vital role in maintaining tissue integrity and organismal homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant challenge for the immune system: it must quickly substitute dead myocardial with fibrotic tissue while controlling overt inflammatory responses. In this review, we will discuss the central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes and controlling local inflammation in the context of MI. We herein compile recent advances enabled by the use of transgenic mouse models with defined cardiac antigen specificity, explore whole-heart imaging techniques, outline clinical studies and summarize deep-phenotyping conducted by independent labs using single-cell transcriptomics and T-cell repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells to local immune modulation in myeloid and lymphoid lineages. We also discuss how both cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider intriguing novel evidence on how the myocardial milieu takes control of potentially auto-aggressive local immune reactions by shaping myosin-specific T-cell development towards a regulatory phenotype. Finally, we examine the potential use of Treg manipulating drugs in the clinic after MI.


Assuntos
Infarto do Miocárdio , Animais , Fibrose , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa