Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.549
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(6): 1447-1460.e14, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799039

RESUMO

The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.


Assuntos
DNA/imunologia , Nucleotidiltransferases/metabolismo , Tolerância a Antígenos Próprios/imunologia , Acetilação , Sequência de Aminoácidos , Animais , Aspirina/farmacologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linhagem Celular , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Células THP-1
2.
Plant Cell ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916914

RESUMO

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

3.
Hum Mol Genet ; 33(4): 333-341, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903058

RESUMO

Transcriptome-wide association studies (TWAS) have identified many putative susceptibility genes for colorectal cancer (CRC) risk. However, susceptibility miRNAs, critical dysregulators of gene expression, remain unexplored. We genotyped DNA samples from 313 CRC East Asian patients and performed small RNA sequencing in their normal colon tissues distant from tumors to build genetic models for predicting miRNA expression. We applied these models and data from genome-wide association studies (GWAS) including 23 942 cases and 217 267 controls of East Asian ancestry to investigate associations of predicted miRNA expression with CRC risk. Perturbation experiments separately by promoting and inhibiting miRNAs expressions and further in vitro assays in both SW480 and HCT116 cells were conducted. At a Bonferroni-corrected threshold of P < 4.5 × 10-4, we identified two putative susceptibility miRNAs, miR-1307-5p and miR-192-3p, located in regions more than 500 kb away from any GWAS-identified risk variants in CRC. We observed that a high predicted expression of miR-1307-5p was associated with increased CRC risk, while a low predicted expression of miR-192-3p was associated with increased CRC risk. Our experimental results further provide strong evidence of their susceptible roles by showing that miR-1307-5p and miR-192-3p play a regulatory role, respectively, in promoting and inhibiting CRC cell proliferation, migration, and invasion, which was consistently observed in both SW480 and HCT116 cells. Our study provides additional insights into the biological mechanisms underlying CRC development.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma/genética , Estudo de Associação Genômica Ampla , Neoplasias Colorretais/metabolismo , Células HCT116 , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética
4.
Am J Hum Genet ; 110(7): 1162-1176, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352861

RESUMO

Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Seguimentos , Predisposição Genética para Doença , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Homeodomínio/genética
5.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126689

RESUMO

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo
6.
EMBO J ; 40(3): e105086, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347628

RESUMO

The roles of clock components in salt stress tolerance remain incompletely characterized in rice. Here, we show that, among OsPRR (Oryza sativa Pseudo-Response Regulator) family members, OsPRR73 specifically confers salt tolerance in rice. Notably, the grain size and yield of osprr73 null mutants were significantly decreased in the presence of salt stress, with accumulated higher level of reactive oxygen species and sodium ions. RNA sequencing and biochemical assays identified OsHKT2;1, encoding a plasma membrane-localized Na+ transporter, as a transcriptional target of OsPRR73 in mediating salt tolerance. Correspondingly, null mutants of OsHKT2;1 displayed an increased tolerance to salt stress. Immunoprecipitation-mass spectrometry (IP-MS) assays further identified HDAC10 as nuclear interactor of OsPRR73 and co-repressor of OsHKT2;1. Consistently, H3K9ac histone marks at OsHKT2;1 promoter regions were significantly reduced in osprr73 mutant. Together, our findings reveal that salt-induced OsPRR73 expression confers salt tolerance by recruiting HDAC10 to transcriptionally repress OsHKT2;1, thus reducing cellular Na+ accumulation. This exemplifies a new molecular link between clock components and salt stress tolerance in rice.


Assuntos
Proteínas CLOCK/genética , Histona Desacetilases/metabolismo , Oryza/crescimento & desenvolvimento , Tolerância ao Sal , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação com Perda de Função , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sódio/metabolismo
7.
Gastroenterology ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906512

RESUMO

BACKGROUNDS & AIMS: Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS: PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS: HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS: Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.

8.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37114640

RESUMO

Recovering high-quality metagenome-assembled genomes (HQ-MAGs) is critical for exploring microbial compositions and microbe-phenotype associations. However, multiple sequencing platforms and computational tools for this purpose may confuse researchers and thus call for extensive evaluation. Here, we systematically evaluated a total of 40 combinations of popular computational tools and sequencing platforms (i.e. strategies), involving eight assemblers, eight metagenomic binners and four sequencing technologies, including short-, long-read and metaHiC sequencing. We identified the best tools for the individual tasks (e.g. the assembly and binning) and combinations (e.g. generating more HQ-MAGs) depending on the availability of the sequencing data. We found that the combination of the hybrid assemblies and metaHiC-based binning performed best, followed by the hybrid and long-read assemblies. More importantly, both long-read and metaHiC sequencings link more mobile elements and antibiotic resistance genes to bacterial hosts and improve the quality of public human gut reference genomes with 32% (34/105) HQ-MAGs that were either of better quality than those in the Unified Human Gastrointestinal Genome catalog version 2 or novel.


Assuntos
Metagenoma , Metagenômica , Humanos , Análise de Sequência de DNA , Bactérias/genética , Trato Gastrointestinal
9.
Plant Physiol ; 194(4): 2354-2371, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38060676

RESUMO

Temperature-sensitive male sterility is one of the core components for hybrid rice (Oryza sativa) breeding based on the 2-line system. We previously found that knockout of ARGONAUTE 1d (AGO1d) causes temperature-sensitive male sterility in rice by influencing phased small interfering RNA (phasiRNA) biogenesis and function. However, the specific phasiRNAs and their targets underlying the temperature-sensitive male sterility in the ago1d mutant remain unknown. Here, we demonstrate that the ago1d mutant displays normal female fertility but complete male sterility at low temperature. Through a multiomics analysis of small RNA (sRNA), degradome, and transcriptome, we found that 21-nt phasiRNAs account for the greatest proportion of the 21-nt sRNA species in rice anthers and are sensitive to low temperature and markedly downregulated in the ago1d mutant. Moreover, we found that 21-nt phasiRNAs are essential for the mRNA cleavage of a set of fertility- and cold tolerance-associated genes, such as Earlier Degraded Tapetum 1 (EDT1), Tapetum Degeneration Retardation (TDR), OsPCF5, and OsTCP21, directly or indirectly determined by AGO1d-mediated gene silencing. The loss of function of 21-nt phasiRNAs can result in upregulation of their targets and causes varying degrees of defects in male fertility and grain setting. Our results highlight the essential functions of 21-nt phasiRNAs in temperature-sensitive male sterility in rice and suggest their promising application in 2-line hybrid rice breeding in the future.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Oryza/genética , Oryza/metabolismo , Nucleotídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , RNA de Plantas/genética , Melhoramento Vegetal , RNA Interferente Pequeno/genética , Regulação da Expressão Gênica de Plantas
10.
Plant Cell ; 34(8): 2907-2924, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35543486

RESUMO

To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Tiques , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
11.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte Biológico
12.
Nature ; 569(7754): 99-103, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043727

RESUMO

Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3-8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9-11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir-Ni-Ta-(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6-8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15-17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.

13.
Nucleic Acids Res ; 51(20): 10924-10933, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843097

RESUMO

Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000. Variant frequency analysis indicated that ∼90% of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 2.7% were predicted to be deleterious. Population structure, genetic diversity and gene functional polymorphism of this large population were evaluated based on different subsets of RSPVM, demonstrating the great potential of RSPVM for use in downstream applications. Our study provides both a rich genetic basis for understanding natural rice variations and a powerful tool for exploiting great potential of rare variants in future rice research, including population genetics and functional genomics.


Assuntos
Variação Genética , Oryza , Genética Populacional , Genômica , Oryza/genética , Polimorfismo de Nucleotídeo Único
14.
Proc Natl Acad Sci U S A ; 119(49): e2210404119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442095

RESUMO

Diapause is a form of dormancy used widely by insects to survive adverse seasons. Previous studies have demonstrated that forkhead box O (FoxO) is activated during pupal diapause initiation in the moth Helicoverpa armigera. However, it is unclear how FoxO induces diapause. Here, we show that knockout of FoxO causes H. armigera diapause-destined pupae to channel into nondiapause, indicating that FoxO is a master regulator that induces insect diapause. FoxO activates the ubiquitin-proteasome system (UPS) by promoting ubiquitin c (Ubc) expression via directly binding to the Ubc promoter. Activated UPS decreases transforming growth factor beta (TGFß) receptor signaling via ubiquitination to block developmental signaling to induce diapause. This study significantly advances the understanding of insect diapause by uncovering the detailed molecular mechanism of FoxO.


Assuntos
Diapausa de Inseto , Diapausa , Animais , Fator de Crescimento Transformador beta , Pupa , Transdução de Sinais , Receptores de Fatores de Crescimento Transformadores beta , Ubiquitina , Complexo de Endopeptidases do Proteassoma
15.
J Biol Chem ; 299(3): 102950, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717080

RESUMO

Previous studies have demonstrated that high physiological levels of reactive oxygen species induce pupal diapause and extend lifespan in the moth Helicoverpa armigera. This has been shown to occur via protein arginine methyltransferase 1 (PRMT1) blockade of Akt-mediated phosphorylation of the transcription factor FoxO, after which activated FoxO promotes the initiation of diapause. However, it is unclear how PRMT1 is activated upstream of FoxO activity. Here, we show that high reactive oxygen species levels in the brains of H. armigera diapause-destined pupae activate the expression of c-Jun N-terminal kinase, which subsequently activates the transcription factor cAMP-response element binding protein. We show that cAMP-response element binding protein then directly binds to the PRMT1 promoter and upregulates its expression to prevent Akt-mediated FoxO phosphorylation and downstream FoxO nuclear localization. This novel finding that c-Jun N-terminal kinase promotes FoxO nuclear localization in a PRMT1-dependent manner to regulate pupal diapause reveals a complex regulatory mechanism in extending the healthspan of H. armigera.


Assuntos
Mariposas , Proteína-Arginina N-Metiltransferases , Animais , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Longevidade , Mariposas/fisiologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Pupa , Diapausa
16.
J Biol Chem ; 299(12): 105406, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38270391

RESUMO

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Assuntos
Fucose , Proteínas de Transporte de Monossacarídeos , Proteínas de Transporte de Nucleotídeos , Animais , Feminino , Humanos , Camundongos , Gravidez , Fator de Crescimento Epidérmico , Fucose/metabolismo , Células HEK293 , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Neoplasias , Proteínas de Transporte de Nucleotídeos/genética , Trombospondinas/metabolismo , Camundongos Knockout , Receptor Notch1/metabolismo , Transdução de Sinais
17.
Lab Invest ; 104(4): 102028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382808

RESUMO

Primary gastrointestinal (GI) T-cell and natural killer (NK)-cell lymphomas/lymphoproliferative disorders (LPD) are uncommon, and they are usually aggressive in nature. However, T-cell and NK-cell lymphoma/LPD of the GI tract with indolent clinical course has been reported over the past 2 decades. Indolent T-cell LPD was formally proposed a decade ago in 2013 and 4 years later recognized as a provisional entity by the revised fourth edition of WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues in 2017. Indolent T-cell LPD of the GI tract has been changed to indolent T-cell lymphoma of the GI tract as a distinct entity by the fifth edition of WHO Classification of Haematolymphoid Tumours, but the International Consensus Classification of mature lymphoid neoplasms prefers indolent clonal T-cell LPD of the GI tract instead. In the past decade, indolent lymphoma/LPD of the GI tract has been expanded to NK cells, and as such, indolent NK-cell LPD of the GI tract was recognized as an entity by both the fifth edition of WHO Classification of Haematolymphoid Tumours and the International Consensus Classification. The underlying genetic/molecular mechanisms of both indolent T-cell lymphoma/LPD of the GI tract and indolent NK-cell LPD of the GI tract have been recently discovered. In this review, we describe the history; salient clinical, cytohistomorphologic, and immunohistochemical features; and genetic/genomic landscape of both entities. In addition, we also summarize the mimics and differential diagnosis. Finally, we propose future directions with regard to the pathogenesis and clinical management.


Assuntos
Linfoma de Células T , Linfoma , Transtornos Linfoproliferativos , Humanos , Linfoma/diagnóstico , Linfoma/patologia , Trato Gastrointestinal/patologia , Células Matadoras Naturais , Linfoma de Células T/diagnóstico , Linfócitos T/patologia , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/patologia
18.
Int J Cancer ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894502

RESUMO

Epstein-Barr virus (EBV) is detected in nearly 100% of nonkeratinizing nasopharyngeal carcinoma (NPC) and EBV-based biomarkers are used for NPC screening in endemic regions. Immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA), and recently identified anti-BNLF2b antibodies have been shown to be the most effective screening tool; however, the screening efficacy still needs to be improved. This study developed a multiplex serological assay by testing IgA and immunoglobulin G (IgG) antibodies against representative EBV antigens that are highly transcribed in NPC and/or function crucially in viral reactivation, including BALFs, BNLF2a/b, LF1, LF2, and Zta (BZLF1). Among them, BNLF2b-IgG had the best performance distinguishing NPC patients from controls (area under the curve: 0.951, 95% confidence interval [CI]: 0.913-0.990). Antibodies to lytic antigens BALF2 and VCA were significantly higher in advanced-stage than in early-stage tumors; in contrast, antibodies to latent protein EBNA1 and early lytic antigen BNLF2b were not correlated with tumor progression. Accordingly, a novel strategy combining EBNA1-IgA and BNLF2b-IgG was proposed and validated improving the integrated discrimination by 15.8% (95% CI: 9.8%-21.7%, p < .0001) compared with the two-antibody method. Furthermore, we found EBV antibody profile in patients was more complicated compared with that in healthy carriers, in which stronger correlations between antibodies against different phases of antigens were observed. Overall, our serological assay indicated that aberrant latent infection of EBV in nasopharyngeal epithelial cells was probably a key step in NPC initiation, while more lytic protein expression might be involved in NPC progression.

19.
Cancer Sci ; 115(1): 83-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985391

RESUMO

Autoantibodies (AAbs) in the blood of colorectal cancer (CRC) patients have been evaluated for tumor detection. However, it remains uncertain whether these AAbs are specific to tumor-associated antigens. In this study, we explored the IgG and IgM autoantibody repertoires in both the in situ tissue microenvironment and peripheral blood as potential tumor-specific biomarkers. We applied high-density protein arrays to profile AAbs in the tumor-infiltrating lymphocyte supernatants and corresponding serum from four patients with CRC, as well as in the serum of three noncancer controls. Our findings revealed that there were more reactive IgM AAbs than IgG in both the cell supernatant and corresponding serum, with a difference of approximately 3-5 times. Immunoglobulin G was predominant in the serum, while IgM was more abundant in the cell supernatant. We identified a range of AAbs present in both the supernatant and the corresponding serum, numbering between 432 and 780, with an average of 53.3% shared. Only 4.7% (n = 23) and 0.2% (n = 2) of reactive antigens for IgG and IgM AAbs, respectively, were specific to CRC. Ultimately, we compiled a list of 19 IgG AAb targets as potential tumor-specific AAb candidates. Autoantibodies against one of the top candidates, p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A), were significantly elevated in 53 CRC patients compared to 119 controls (p < 0.0001). The project revealed that tissue-derived IgG AAbs, rather than IgM, are the primary source of tumor-specific AAbs in peripheral blood. It also identified potential tumor-specific AAbs that could be applied for noninvasive screening of CRC.


Assuntos
Autoanticorpos , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais , Imunoglobulina G , Imunoglobulina M , Microambiente Tumoral , Proteínas Repressoras , Proteínas de Ciclo Celular
20.
Anal Chem ; 96(23): 9659-9665, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38798234

RESUMO

The intercellular communication of mechanotransduction has a significant impact on various cellular processes. Tunneling nanotubes (TNTs) have been documented to possess the capability of transmitting mechanical stimulation between cells, thereby triggering an influx of Ca2+ ions. However, the related kinetic information on the TNT-mediated intercellular mechanotransduction communication is still poorly explored. Herein, we developed a classic and sensitive Pt-functionalized carbon fiber microelectrochemical sensor (Pt/CF) to study the intercellular communication of endothelial mechanotransduction through TNTs. The experimental findings demonstrate that the transmission of mechanical stimulation from stimulated human umbilical vein endothelial cells (HUVECs) to recipient HUVECs connected by TNTs occurred quickly (<100 ms) and effectively promoted nitric oxide (NO) production in the recipient HUVECs. The kinetic profile of NO release exhibited remarkable similarity in stimulated and recipient HUVECs. But the production of NO in the recipient cell is significantly attenuated (16.3%) compared to that in the stimulated cell, indicating a transfer efficiency of approximately 16.3% for TNTs. This study unveils insights into the TNT-mediated intercellular communication of mechanotransduction.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Mecanotransdução Celular , Nanotubos , Humanos , Nanotubos/química , Óxido Nítrico/metabolismo , Comunicação Celular , Técnicas Eletroquímicas , Técnicas Biossensoriais , Estruturas da Membrana Celular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa