Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Tob Control ; 32(5): 627-634, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35241500

RESUMO

ObjectivesFlavoured products are especially appealing to youth and contribute to the onset of waterpipe smoking and continued use of waterpipe tobacco. The goal of database and chemical analysis was to provide a clear overview of commonly used flavours and flavourings in tobacco and related waterpipe products, that is, herbal molasses and steam stones. METHODS: In 2019, 249 waterpipe tobacco products were registered in the European Common Entry Gate by manufacturers to be marketed in The Netherlands. Flavour categories were assigned to the registered products based on their brand names and product descriptions. Nicotine and eleven 1111 flavourings were identified and quantified in waterpipe tobacco (n=8), herbal molasses (n=7) and steam stones (n=4) by extraction and gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Flavour categories could be assigned to 237 of 249 registered waterpipe tobacco products. Eight flavour main categories and 48 unique subcategories were identified and presented in a flavour wheel. All registered waterpipe tobacco products were flavoured, and the majority (78%) was fruit flavoured. Herbal molasses contained similar median flavouring levels, and steam stones contained lower median levels compared with waterpipe tobacco. Flavourings in waterpipe products were almost exclusively fruity and sweet, often in combination with menthol/mint flavourings. CONCLUSIONS: This study is the first to present a waterpipe tobacco flavour wheel, providing a quick overview of waterpipe tobacco flavours and thereby aiding communication among experts around the globe. GC-MS analysis revealed that the most prevalent flavourings are present in similar levels in herbal and tobacco waterpipe products. Banning flavourings in all waterpipe products would be a good strategy to reduce waterpipe smoking among youth.


Assuntos
Produtos do Tabaco , Fumar Cachimbo de Água , Adolescente , Humanos , Nicotiana , Produtos do Tabaco/análise , Vapor , Melaço/análise , Aromatizantes/análise
2.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359877

RESUMO

Chronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dysfunction has been implicated in the pathophysiology of COPD, the role of aldehydes therein is incompletely understood. To investigate this, we used a physiologically relevant in vitro exposure model of differentiated human primary bronchial epithelial cells (PBEC) exposed to CS (one cigarette) or a mixture of acetaldehyde, acrolein, and formaldehyde (at relevant concentrations of one cigarette) or air, in a continuous flow system using a puff-like exposure protocol. Exposure of PBEC to CS resulted in elevated IL-8 cytokine and mRNA levels, increased abundance of constituents associated with autophagy, decreased protein levels of molecules associated with the mitophagy machinery, and alterations in the abundance of regulators of mitochondrial biogenesis. Furthermore, decreased transcript levels of basal epithelial cell marker KRT5 were reported after CS exposure. Only parts of these changes were replicated in PBEC upon exposure to a combination of acetaldehyde, acrolein, and formaldehyde. More specifically, aldehydes decreased MAP1LC3A mRNA (autophagy) and BNIP3 protein (mitophagy) and increased ESRRA protein (mitochondrial biogenesis). These data suggest that other compounds in addition to aldehydes in CS contribute to CS-induced dysregulation of constituents controlling mitochondrial content and function in airway epithelial cells.


Assuntos
Aldeídos , Doença Pulmonar Obstrutiva Crônica , Humanos , Aldeídos/metabolismo , Acroleína/toxicidade , Acroleína/metabolismo , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Acetaldeído/toxicidade , Acetaldeído/metabolismo , Nicotiana , Formaldeído , RNA Mensageiro/metabolismo , Fumar
3.
Artigo em Inglês | MEDLINE | ID: mdl-34770036

RESUMO

INTRODUCTION: E-cigarette product regulation requires accurate analyses of emissions. User behavior, including device power setting selection, should be mimicked closely when generating e-cigarette emissions in a laboratory. Excessively high power settings result in an adverse burnt off-taste, called "dry puff flavor". This should be avoided because it results in an overestimation of toxicant levels (especially certain carbonyls). This study presents a human volunteer-validated approach to detect excessively high e-cigarette power settings by HPLC-DAD (high-performance liquid chromatography-diode array detection) carbonyl analysis. METHODS: Thirteen experienced e-cigarette users evaluated whether the "dry puff flavor" was present at different power settings (10 W-25 W), recording their assessment on a 100-unit visual analog scale (VAS). They assessed e-cigarettes equipped with 1.2 Ω or 1.6 Ω coils containing menthol, vanilla or fruit-flavored e-liquids. In a machine-vaping experiment, emissions from the same liquid/coil/power setting combinations were subjected to HPLC-DAD analysis of dinitrophenol hydrazine (DNPH)-derivatized carbonyls, such as lactaldehyde and formaldehyde. A simple algorithm, based on the cutoff values for each marker, was applied to relate the dry puff flavor (as assessed by the human volunteers) to the laboratory measurements. RESULTS: Eleven carbonyl compounds were found to agree with the human assessments. Based on the amounts of these compounds in the emissions, the dry-puff flavor did match at all combinations of e-liquids and coils examined. Dry-puff flavor was observed at different power levels with the different liquids tested. CONCLUSIONS: The described method can detect dry puff conditions and is therefore a useful tool to ensure user-relevant conditions in laboratory analyses of e-cigarette emissions. IMPLICATIONS: This study improves the chemical analysis of e-cigarette emissions. It offers a method to select an appropriate (i.e., user-relevant) power setting for e-cigarettes, which is a critical parameter for emission analysis and therefore important for regulatory purposes and risk assessments. Compared to the approach of using human volunteers to select appropriate power settings for different products by taste, the described method is cheaper, faster, more practical and more ethical.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Formaldeído , Humanos , Laboratórios , Fumantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa