Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
EMBO J ; 42(15): e113126, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345898

RESUMO

N6 -methyladenosine (m6 A) in messenger RNA (mRNA) regulates immune cells in homeostasis and in response to infection and inflammation. The function of the m6 A reader YTHDF2 in the tumor microenvironment (TME) in these contexts has not been explored. We discovered that the loss of YTHDF2 in regulatory T (Treg) cells reduces tumor growth in mice. Deletion of Ythdf2 in Tregs does not affect peripheral immune homeostasis but leads to increased apoptosis and impaired suppressive function of Treg cells in the TME. Elevated tumor necrosis factor (TNF) signaling in the TME promotes YTHDF2 expression, which in turn regulates NF-κB signaling by accelerating the degradation of m6 A-modified transcripts that encode NF-κB-negative regulators. This TME-specific regulation of Treg by YTHDF2 points to YTHDF2 as a potential target for anti-cancer immunotherapy, where intratumoral Treg cells can be targeted to enhance anti-tumor immune response while avoiding Treg cells in the periphery to minimize undesired inflammations.


Assuntos
NF-kappa B , Neoplasias , Camundongos , Animais , NF-kappa B/genética , Neoplasias/genética , Transdução de Sinais , Imunoterapia , Inflamação , Microambiente Tumoral
2.
Immunity ; 49(3): 490-503.e4, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30170810

RESUMO

The NF-κB pathway plays a crucial role in supporting tumor initiation, progression, and radioresistance of tumor cells. However, the role of the NF-κB pathway in radiation-induced anti-tumor host immunity remains unclear. Here we demonstrated that inhibiting the canonical NF-κB pathway dampened the therapeutic effect of ionizing radiation (IR), whereas non-canonical NF-κB deficiency promoted IR-induced anti-tumor immunity. Mechanistic studies revealed that non-canonical NF-κB signaling in dendritic cells (DCs) was activated by the STING sensor-dependent DNA-sensing pathway. By suppressing recruitment of the transcription factor RelA onto the Ifnb promoter, activation of the non-canonical NF-κB pathway resulted in decreased type I IFN expression. Administration of a specific inhibitor of the non-canonical NF-κB pathway enhanced the anti-tumor effect of IR in murine models. These findings reveal the potentially interactive roles for canonical and non-canonical NF-κB pathways in IR-induced STING-IFN production and provide an alternative strategy to improve cancer radiotherapy.


Assuntos
Neoplasias do Colo/radioterapia , Células Dendríticas/imunologia , Melanoma/radioterapia , NF-kappa B/metabolismo , Neoplasias Experimentais/radioterapia , Radioterapia/métodos , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Neoplasias do Colo/imunologia , DNA/imunologia , Modelos Animais de Doenças , Humanos , Imunidade Celular , Melanoma/imunologia , Melanoma Experimental , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Tolerância a Radiação , Radiação Ionizante , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Immunity ; 47(2): 363-373.e5, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28801234

RESUMO

Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.


Assuntos
Antígenos de Diferenciação/metabolismo , Neoplasias do Colo/imunologia , DNA Mitocondrial/imunologia , Células Dendríticas/imunologia , Proteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Animais , Anticorpos Bloqueadores/uso terapêutico , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Apresentação Cruzada , Modelos Animais de Doenças , Humanos , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Evasão Tumoral
4.
Nature ; 566(7743): 270-274, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728504

RESUMO

There is growing evidence that tumour neoantigens have important roles in generating spontaneous antitumour immune responses and predicting clinical responses to immunotherapies1,2. Despite the presence of numerous neoantigens in patients, complete tumour elimination is rare, owing to failures in mounting a sufficient and lasting antitumour immune response3,4. Here we show that durable neoantigen-specific immunity is regulated by mRNA N6-methyadenosine (m6A) methylation through the m6A-binding protein YTHDF15. In contrast to wild-type mice, Ythdf1-deficient mice show an elevated antigen-specific CD8+ T cell antitumour response. Loss of YTHDF1 in classical dendritic cells enhanced the cross-presentation of tumour antigens and the cross-priming of CD8+ T cells in vivo. Mechanistically, transcripts encoding lysosomal proteases are marked by m6A and recognized by YTHDF1. Binding of YTHDF1 to these transcripts increases the translation of lysosomal cathepsins in dendritic cells, and inhibition of cathepsins markedly enhances cross-presentation of wild-type dendritic cells. Furthermore, the therapeutic efficacy of PD-L1 checkpoint blockade is enhanced in Ythdf1-/- mice, implicating YTHDF1 as a potential therapeutic target in anticancer immunotherapy.


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Células Dendríticas/imunologia , Neoplasias/imunologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Antígeno B7-H1/metabolismo , Sítios de Ligação , Linfócitos T CD8-Positivos/imunologia , Catepsinas/antagonistas & inibidores , Catepsinas/biossíntese , Catepsinas/genética , Apresentação Cruzada/imunologia , Células Dendríticas/enzimologia , Feminino , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Biossíntese de Proteínas , Proteínas/genética , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Transcriptoma/genética
5.
Nature ; 568(7751): E3, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30911170

RESUMO

In this Letter, a citation to 'Fig. 1e' has been corrected to 'Fig. 1d' in the sentence starting "By contrast, the anti-tumour response…". This has been corrected online.

6.
J Am Chem Soc ; 146(1): 849-857, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134050

RESUMO

Phthalocyanine photosensitizers (PSs) have shown promise in fluorescence imaging and photodynamic therapy (PDT) of malignant tumors, but their practical application is limited by the aggregation-induced quenching (AIQ) and inherent photobleaching of PSs. Herein, we report the synthesis of a two-dimensional nanoscale covalent organic framework (nCOF) with staggered (AB) stacking of zinc-phthalocyanines (ZnPc), ZnPc-PI, for fluorescence imaging and mitochondria-targeted PDT. ZnPc-PI isolates and confines ZnPc PSs in the rigid nCOF to reduce AIQ, improve photostability, enhance cellular uptake, and increase the level of reactive oxygen species (ROS) generation via mitochondrial targeting. ZnPc-PI shows efficient tumor accumulation, which allowed precise tumor imaging and nanoparticle tracking. With high cellular uptake and tumor accumulation, intrinsic mitochondrial targeting, and enhanced ROS generation, ZnPc-PI exhibits potent PDT efficacy with >95% tumor growth inhibition on two murine colon cancer models without causing side effects.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Camundongos , Humanos , Animais , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/uso terapêutico , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Isoindóis , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Mitocôndrias , Linhagem Celular Tumoral
7.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837955

RESUMO

Covalent organic frameworks (COFs) have been explored for photodynamic therapy (PDT) of cancer, but their antitumor efficacy is limited by excited state quenching and low reactive oxygen species generation efficiency. Herein, we report a simultaneous protonation and metalation strategy to significantly enhance the PDT efficacy of a nanoscale two-dimensional imine-linked porphyrin-COF. The neutral and unmetalated porphyrin-COF (Ptp) and the protonated and metalated porphyrin-COF (Ptp-Fe) were synthesized via imine condensation between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin and terephthalaldehyde in the absence and presence of ferric chloride, respectively. The presence of ferric chloride generated both doubly protonated and Fe3+-coordinated porphyrin units, which red-shifted and increased the Q-band absorption and disrupted exciton migration to prevent excited state quenching, respectively. Under light irradiation, rapid energy transfer from protonated porphyrins to Fe3+-coordinated porphyrins in Ptp-Fe enabled 1O2 and hydroxyl radical generation via type II and type I PDT processes. Ptp-Fe also catalyzed the conversion of hydrogen peroxide to hydroxy radical through a photoenhanced Fenton-like reaction under slightly acidic conditions and light illumination. As a result, Ptp-Fe-mediated PDT exhibited much higher cytotoxicity than Ptp-mediated PDT on CT26 and 4T1 cancer cells. Ptp-Fe-mediated PDT afforded potent antitumor efficacy in subcutaneous CT26 murine colon cancer and orthotopic 4T1 murine triple-negative breast tumors and prevented metastasis of 4T1 breast cancer to the lungs. This work underscores the role of fine-tuning the molecular structures of COFs in significantly enhancing their PDT efficacy.

8.
J Am Chem Soc ; 145(34): 18698-18704, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37581644

RESUMO

As heavy-metal-based nanoscale metal-organic frameworks (nMOFs) are excellent radiosensitizers for radiotherapy via enhanced energy deposition and reactive oxygen species (ROS) generation, we hypothesize that nMOFs with covalently conjugated and X-ray triggerable prodrugs can harness the ROS for on-demand release of chemotherapeutics for chemoradiotherapy. Herein, we report the design of a novel nMOF, Hf-TP-SN, with an X-ray-triggerable 7-ethyl-10-hydroxycamptothecin (SN38) prodrug for synergistic radiotherapy and chemotherapy. Upon X-ray irradiation, electron-dense Hf12 secondary building units serve as radiosensitizers to enhance hydroxyl radical generation for the triggered release of SN38 via hydroxylation of the 3,5-dimethoxylbenzyl carbonate followed by 1,4-elimination, leading to 5-fold higher release of SN38 from Hf-TP-SN than its molecular counterpart. As a result, Hf-TP-SN plus radiation induces significant cytotoxicity to cancer cells and efficiently inhibits tumor growth in colon and breast cancer mouse models.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Pró-Fármacos , Radiossensibilizantes , Animais , Camundongos , Estruturas Metalorgânicas/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Raios X , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Radiossensibilizantes/uso terapêutico , Linhagem Celular Tumoral
9.
Small ; 19(52): e2305440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635106

RESUMO

Cancer cells alter mechanical tension in their cell membranes. New interventions to regulate cell membrane tension present a potential strategy for cancer therapy. Herein, the increase of cell membrane tension by cholesterol oxidase (COD) via cholesterol depletion in vitro and the design of a COD-functionalized nanoscale metal-organic framework, Hf-TBP/COD, for cholesterol depletion and mechanoregulation of tumors in vivo, are reported. COD is found to deplete cholesterol and disrupt the mechanical properties of lipid bilayers, leading to decreased cell proliferation, migration, and tolerance to oxidative stress. Hf-TBP/COD increases mechanical tension of plasma membranes and osmotic fragility of cancer cells, which induces influx of calcium ions, inhibits cell migration, increases rupturing propensity for effective caspase-1 mediated pyroptosis, and decreases tolerance to oxidative stress. In the tumor microenvironment, Hf-TBP/COD downregulates multiple immunosuppressive checkpoints to reinvigorate T cells and enhance T cell infiltration. Compared to Hf-TBP, Hf-TBP/COD improves anti-tumor immune response and tumor growth inhibition from 54.3% and 79.8% to 91.7% and 95% in a subcutaneous triple-negative breast cancer model and a colon cancer model, respectively.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Colesterol Oxidase , Piroptose , Linfócitos T , Colesterol , Microambiente Tumoral
10.
Immunity ; 41(5): 843-52, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517616

RESUMO

Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy.


Assuntos
DNA/imunologia , Proteínas de Membrana/genética , Neoplasias/radioterapia , Nucleotidiltransferases/imunologia , Imunidade Adaptativa , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Antineoplásicos/farmacologia , Células Cultivadas , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Interferon beta/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Neoplasias/imunologia , Nucleotídeos Cíclicos/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Radiação Ionizante , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/imunologia , Xantonas/farmacologia
11.
Proc Natl Acad Sci U S A ; 117(36): 22423-22429, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848073

RESUMO

Metastases are the cause of the vast majority of cancer deaths. In the metastatic process, cells migrate to the vasculature, intravasate, extravasate, and establish metastatic colonies. This pattern of spread requires the cancer cells to change shape and to navigate tissue barriers. Approaches that block this mechanical program represent new therapeutic avenues. We show that 4-hydroxyacetophenone (4-HAP) inhibits colon cancer cell adhesion, invasion, and migration in vitro and reduces the metastatic burden in an in vivo model of colon cancer metastasis to the liver. Treatment with 4-HAP activates nonmuscle myosin-2C (NM2C) (MYH14) to alter actin organization, inhibiting the mechanical program of metastasis. We identify NM2C as a specific therapeutic target. Pharmacological control of myosin isoforms is a promising approach to address metastatic disease, one that may be readily combined with other therapeutic strategies.


Assuntos
Acetofenonas/farmacologia , Actomiosina/metabolismo , Citoesqueleto , Metástase Neoplásica/fisiopatologia , Actinas/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Nus
12.
Gut ; 71(3): 521-533, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33685966

RESUMO

OBJECTIVE: Our goals were to evaluate the antitumour efficacy of Lactobacillus rhamnosus GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN: We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS: We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in Lactobacillus murinus and Bacteroides uniformis, that are known to increase DC activation and CD8+tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8+ T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-ß induction in response to LGG, as evidenced by the significant decrease in IFN-ß levels in cGAS or STING-deficient DCs. LGG induces IFN-ß production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION: Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.


Assuntos
Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Lacticaseibacillus rhamnosus , Melanoma/terapia , Probióticos/uso terapêutico , Administração Oral , Animais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Interferon Tipo I/metabolismo , Melanoma/etiologia , Melanoma/patologia , Camundongos
13.
Ann Surg Oncol ; 28(13): 8532-8543, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34091777

RESUMO

BACKGROUND: Pancreatic neuroendocrine tumors (PanNETs) are increasingly common. Experts debate whether small tumors should be resected. Tumor destruction via injection of cytotoxic agents could offer a minimal invasive approach to this controversy. We hypothesize that a new drug delivery system comprising chondroitin sulfate (CS) hydrogels loaded with sunitinib (SUN) suppresses tumor growth in PanNET cells. METHODS: Injectable hydrogels composed of CS modified with methacrylate groups (MA) were fabricated and loaded with SUN. Loading target was either 200 µg (SUN200-G) or 500 µg (SUN500-G) as well as sham hydrogel with no drug loading (SUN0-G). SUN release from hydrogels was monitored in vitro over time and cytotoxicity induced by the released SUN was evaluated using QGP-1 and BON1 PanNET cell lines. QGP-1 xenografts were developed in 35 mice and directly injected with 25 µL of either SUN200-G, SUN500-G, SUN0-G, 100 µL of Sunitinib Malate (SUN-inj), or given 40 mg/kg/day oral sunitinib (SUN-oral). RESULTS: SUN-loaded CSMA hydrogel retained complete in vitro cytotoxicity toward the QGP-1 PanNET and BON-1 PanNET cell lines for 21 days. Mouse xenograft models with QGP-1 PanNETs showed a significant delay in tumor growth in the SUN200/500-G, SUN-inj and SUN-oral groups compared with SUN0-G (p = 0.0014). SUN500-G hydrogels induced significantly more tumor necrosis than SUN0-G (p = 0.04). There was no difference in tumor growth delay between SUN200/500G, SUN-inj, and SUN-oral. CONCLUSIONS: This study demonstrates that CSMA hydrogels loaded with SUN suppress PanNETs growth. This drug delivery could approach represents a novel way to treat PanNETs and other neoplasms via intratumoral injection.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/uso terapêutico , Sistemas de Liberação de Medicamentos , Hidrogéis , Camundongos , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Sunitinibe/uso terapêutico
14.
BMC Biol ; 18(1): 32, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209106

RESUMO

BACKGROUND: Nuclear factor-κB (NF-κB) plays a prominent role in promoting inflammation and resistance to DNA damaging therapy. We searched for proteins that modulate the NF-κB response as a prerequisite to identifying novel factors that affect sensitivity to DNA damaging chemotherapy. RESULTS: Using streptavidin-agarose pull-down, we identified the DExD/H-box RNA helicase, DDX39B, as a factor that differentially interacts with κB DNA probes. Subsequently, using both RNA interference and CRISPR/Cas9 technology, we demonstrated that DDX39B inhibits NF-κB activity by a general mechanism involving inhibition of p65 phosphorylation. Mechanistically, DDX39B mediates this effect by interacting with the pattern recognition receptor (PRR), LGP2, a pathway that required the cellular response to cytoplasmic double-stranded RNA (dsRNA). From a functional standpoint, loss of DDX39B promoted resistance to alkylating chemotherapy in glioblastoma cells. Further examination of DDX39B demonstrated that its protein abundance was regulated by site-specific sumoylation that promoted its poly-ubiquitination and degradation. These post-translational modifications required the presence of the SUMO E3 ligase, PIASx-ß. Finally, genome-wide analysis demonstrated that despite the link to the PRR system, DDX39B did not generally inhibit interferon-stimulated gene expression, but rather acted to attenuate expression of factors associated with the extracellular matrix, cellular migration, and angiogenesis. CONCLUSIONS: These results identify DDX39B, a factor with known functions in mRNA splicing and nuclear export, as an RNA-binding protein that blocks a subset of the inflammatory response. While these findings identify a pathway by which DDX39B promotes sensitization to DNA damaging therapy, the data also reveal a mechanism by which this helicase may act to mitigate autoimmune disease.


Assuntos
RNA Helicases DEAD-box/genética , NF-kappa B/metabolismo , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Alquilação , Animais , RNA Helicases DEAD-box/metabolismo , Sondas de DNA , Tratamento Farmacológico , Humanos , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo
15.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502479

RESUMO

Radiotherapy and immunotherapy are most effective as cancer therapies in the setting of low-volume disease. Although initial studies of radio-immunotherapy in patients with metastatic cancer have not confirmed the efficacy of this approach, the role of radio-immunotherapy in patients with limited metastatic burden is unclear. We propose that further investigation of radio-immunotherapy in metastatic patients should focus upon patients with oligometastatic disease.


Assuntos
Neoplasias/radioterapia , Radioimunoterapia , Humanos , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia
16.
Carcinogenesis ; 41(11): 1605-1615, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32221533

RESUMO

Human papillomavirus (HPV) infection is necessary but insufficient for progression of epithelial cells from dysplasia to carcinoma-in situ (CIS) to invasive cancer. The combination of mutant cellular and viral oncogenes that regulate progression of cervical cancer (CC) remains unclear. Using combinations of HPV16 E6/E7 (E+), mutant Kras (mKras) (K+) and/or loss of Pten (P-/-), we generated autochthonous models of CC without exogenous estrogen, carcinogen or promoters. Furthermore, intravaginal instillation of adenoCre virus enabled focal activation of the oncogenes/inactivation of the tumor suppressor gene. In P+/+ mice, E6/E7 alone (P+/+E+K-) failed to cause premalignant changes, while mKras alone (P+/+E-K+) caused persistent mucosal abnormalities in about one-third of mice, but no cancers. To develop cancer, P+/+ mice needed both E6/E7 and mKras expression. Longitudinal endoscopies of P+/+E+K+ mice predicted carcinoma development by detection of mucosal lesions, found on an average of 23 weeks prior to death, unlike longitudinal quantitative PCRs of vaginal lavage samples from the same mice. Endoscopy revealed that individual mice differed widely in the time required for mucosal lesions to appear after adenoCre and in the time required for these lesions to progress to cancer. These cancers developed in the transition zone that extends, unlike in women, from the murine cervix to the distal vagina. The P-/-E+K+ genotype led to precipitous cancer development within a few weeks and E6/E7-independent cancer development occurred in the P-/-E-K+ genotype. In the P-/-E+K- genotype, mice only developed CIS. Thus, distinct combinations of viral and cellular oncogenes are involved in distinct steps in cervical carcinogenesis.


Assuntos
Carcinógenos/toxicidade , Endoscopia/métodos , Estrogênios/toxicidade , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias Vaginais/patologia , Animais , Carcinogênese , Feminino , Papillomavirus Humano 16/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , PTEN Fosfo-Hidrolase/fisiologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias Vaginais/diagnóstico por imagem , Neoplasias Vaginais/etiologia , Neoplasias Vaginais/metabolismo
17.
Lancet Oncol ; 20(8): e434-e442, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31364595

RESUMO

Metastasis is the leading cause of cancer-related mortality and remains one of the prevailing challenges in cancer treatment. Most patients with metastatic disease are treated with systemic agents, which prolong survival and improve symptoms but are typically not curative. The oligometastatic hypothesis challenges the perspective that metastasis is an invariably disseminated process, and proposes a biological spectrum of metastatic virulence. Mounting evidence supports the idea that patients with numerically and spatially restricted sites of metastases, termed oligometastases, can achieve prolonged survival following metastasis-directed therapies, such as surgery or radiotherapy. Improvements in clinical and molecular staging of metastatic disease, as well as integration of effective systemic therapies with localised interventions, might achieve better outcomes for patients with diverse metastatic states. In this Series paper, we propose a rationale for the integration of immune checkpoint inhibitors with radiotherapy to advance the potential for effective treatment along the spectrum of disease, with emphasis on how immunotherapy can potentiate radiotherapy treatment in the oligometastatic setting.


Assuntos
Imunoterapia/métodos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/radioterapia , Radioterapia/métodos , Animais , Terapia Combinada/métodos , Humanos
18.
Cancer ; 125(3): 340-352, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521067

RESUMO

The term "oligometastatic prostate cancer" refers to a heterogeneous group of disease states currently defined solely on the basis of clinical features. Oligorecurrent disease, de novo oligometastases, and oligoprogressive disease likely have unique biologic underpinnings and natural histories. Evidence suggesting the existence of a subset of patients who harbor prostate cancer with limited metastatic potential currently includes disparate and overwhelmingly retrospective reports. Nevertheless, emerging prospective data have corroborated the "better-than-expected," retrospectively observed outcomes, particularly in the setting of oligorecurrent prostate cancer. Improved functional imaging with prostate-specific membrane antigen-targeted strategies may enhance the identification of patients with oligometastatic prostate cancer in the short term. In the long term, refinement of the oligometastatic case definition likely will require biologic risk-stratification schemes. To determine optimal treatment strategies and identify patients most likely to benefit from metastasis-directed therapy, future efforts should focus on conducting high-quality, prospective trials with much-needed molecular correlative studies.


Assuntos
Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Humanos , Masculino , Metástase Neoplásica , Prognóstico , Neoplasias da Próstata/classificação , Neoplasias da Próstata/terapia , Resultado do Tratamento
19.
Mol Cell ; 44(5): 785-96, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152481

RESUMO

The functional significance of the signaling pathway induced by O(6)-methylguanine (O(6)-MeG) lesions is poorly understood. Here, we identify the p50 subunit of NF-κB as a central target in the response to O(6)-MeG and demonstrate that p50 is required for S(N)1-methylator-induced cytotoxicity. In response to S(N)1-methylation, p50 facilitates the inhibition of NF-κB-regulated antiapoptotic gene expression. Inhibition of NF-κB activity is noted to be an S phase-specific phenomenon that requires the formation of O(6)-MeG:T mismatches. Chk1 associates with p50 following S(N)1-methylation, and phosphorylation of p50 by Chk1 results in the inhibition of NF-κB DNA binding. Expression of an unphosphorylatable p50 mutant blocks inhibition of NF-κB-regulated antiapoptotic gene expression and attenuates S(N)1-methylator-induced cytotoxicity. While O(6)-MeG:T-induced, p50-dependent signaling is not sufficient to induce cell death, this pathway sensitizes cells to the cytotoxic effects of DNA breaks.


Assuntos
Dano ao DNA , Metilação de DNA , Subunidade p50 de NF-kappa B/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/deficiência
20.
Proc Natl Acad Sci U S A ; 113(27): 7551-6, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27317748

RESUMO

Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Neoplasias Experimentais/patologia , Actinas/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Proteínas de Fluorescência Verde , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa