Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Skeletal Radiol ; 53(7): 1319-1332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38240761

RESUMO

OBJECTIVE: To qualitatively and quantitatively evaluate the 2.5-year MRI outcome after Matrix-associated autologous chondrocyte implantation (MACI) at the patella, reconstruction of the medial patellofemoral ligament (MPFL), and combined procedures. METHODS: In 66 consecutive patients (age 22.8 ± 6.4years) with MACI at the patella (n = 16), MPFL reconstruction (MPFL; n = 31), or combined procedures (n = 19) 3T MRI was performed 2.5 years after surgery. For morphological MRI evaluation WORMS and MOCART scores were obtained. In addition quantitative cartilage T2 and T1rho relaxation times were acquired. Several clinical scores were obtained. Statistical analyses included descriptive statistics, Mann-Whitney-U-tests and Pearson correlations. RESULTS: WORMS scores at follow-up (FU) were significantly worse after combined procedures (8.7 ± 4.9) than after isolated MACI (4.3 ± 3.6, P = 0.005) and after isolated MPFL reconstruction (5.3 ± 5.7, P = 0.004). Bone marrow edema at the patella in the combined group was the only (non-significantly) worsening WORMS parameter from pre- to postoperatively. MOCART scores were significantly worse in the combined group than in the isolated MACI group (57 ± 3 vs 88 ± 9, P < 0.001). Perfect defect filling was achieved in 26% and 69% of cases in the combined and MACI group, respectively (P = 0.031). Global and patellar T2 values were higher in the combined group (Global T2: 34.0 ± 2.8ms) and MACI group (35.5 ± 3.1ms) as compared to the MPFL group (31.1 ± 3.2ms, P < 0.05). T2 values correlated significantly with clinical scores (P < 0.005). Clinical Cincinnati scores were significantly worse in the combined group (P < 0.05). CONCLUSION: After combined surgery with patellar MACI and MPFL reconstruction inferior MRI outcomes were observed than after isolated procedures. Therefore, patients with need for combined surgery may be at particular risk for osteoarthritis.


Assuntos
Imageamento por Ressonância Magnética , Patela , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Resultado do Tratamento , Patela/diagnóstico por imagem , Patela/cirurgia , Adulto , Condrócitos/transplante , Transplante Autólogo , Adulto Jovem , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Ligamentos Articulares/diagnóstico por imagem , Ligamentos Articulares/cirurgia , Adolescente
2.
J Headache Pain ; 24(1): 84, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438700

RESUMO

BACKGROUND: Tension-type headache (TTH) is the most prevalent primary headache disorder. Neck pain is commonly associated with primary headaches and the trigemino-cervical complex (TCC) refers to the convergence of trigeminal and cervical afferents onto neurons of the brainstem, thus conceptualizes the emergence of headache in relation to neck pain. However, no objective biomarkers exist for the myofascial involvement in primary headaches. This study aimed to investigate the involvement of the trapezius muscles in primary headache disorders by quantitative magnetic resonance imaging (MRI), and to explore associations between muscle T2 values and headache frequency and neck pain. METHODS: This cohort study prospectively enrolled fifty participants (41 females, age range 20-31 years): 16 subjects with TTH only (TTH-), 12 with mixed-type TTH plus migraine (TTH+), and 22 healthy controls (HC). The participants completed fat-suppressed T2-prepared three-dimensional turbo spin-echo MRI, a headache diary (over 30 days prior to MRI), manual palpation (two weeks before MRI), and evaluation of neck pain (on the day of MRI). The bilateral trapezius muscles were manually segmented, followed by muscle T2 extraction. Associations between muscle T2 and the presence of neck pain as well as the number of days with headache (considering the 30 days prior to imaging using the headache calendar) were analyzed using regression models (adjusting for age, sex, and body mass index). RESULTS: The TTH+ group demonstrated the highest muscle T2 values (right side: 31.4 ± 1.2 ms, left side: 31.4 ± 0.8 ms) as compared to the TTH- group or HC group (p < 0.001). Muscle T2 was significantly associated with the number of headache days (ß-coefficient: 2.04, p = 0.04) and the presence of neck pain (odds ratio: 2.26, p = 0.04). With muscle T2 as the predictor, the area under the curve for differentiating between HC and the TTH+ group was 0.82. CONCLUSIONS: Increased T2 of trapezius muscles may represent an objective imaging biomarker for myofascial involvement in primary headache disorders, which could help to improve patient phenotyping and therapy evaluation. Pathophysiologically, the increased muscle T2 values could be interpreted as a surrogate of neurogenic inflammation and peripheral sensitization within myofascial tissues.


Assuntos
Músculos Superficiais do Dorso , Cefaleia do Tipo Tensional , Feminino , Adulto Jovem , Humanos , Adulto , Cefaleia do Tipo Tensional/diagnóstico por imagem , Cervicalgia/diagnóstico por imagem , Estudos de Coortes , Músculos Superficiais do Dorso/diagnóstico por imagem , Cefaleia
3.
NMR Biomed ; 35(12): e4805, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35892264

RESUMO

The main pathologies in the muscles of patients with neuromuscular diseases (NMD) are fatty infiltration and edema. Recently, quantitative magnetic resonance (MR) imaging for determination of the MR biomarkers proton density fat fraction (PDFF) and water T2 (T2w ) has been advanced. Biophysical effects or pathology can have different effects on MR biomarkers. Thus, for heterogeneously affected muscles, the routinely performed mean or median value analyses of MR biomarkers are questionable. Our work presents a voxel-based histogram analysis of PDFF and T2w images to point out potential quantification errors. In 12 patients with NMD, chemical-shift encoding-based water-fat imaging for PDFF and T2 mapping with spectral adiabatic inversion recovery (SPAIR) for T2w determination was performed. Segmentation of nine thigh muscles was performed bilaterally (n = 216). PDFF and T2 maps were coregistered. A voxel-based comparison of PDFF and T2w showed a decreased T2w with increasing PDFF. Mean T2w and mean T2w without fatty voxels (PDFF < 10%) show good agreement, whereas standard deviation (σ) T2w and σ T2w without fatty voxels show increasing difference with increasing values of σ. Thereby two subgroups can be observed, referring to muscles in which the exclusion of fatty voxels has a negligible influence versus muscles in which a strong dependency of the T2w value distribution on the exclusion of fatty voxels is present. Because of the two opposite effects that influence T2w in a voxel, namely, (i) a pathophysiologically increased water mobility leading to T2w elevation, and (ii) a dependency of T2w on the PDFF leading to decreased T2w , the T2w distribution within a muscle might be heterogenous and the routine mean or median analysis can lead to a misinterpretation of the muscle health. It was concluded that muscle T2w mean values can wrongly suggest healthy muscle tissue. A deeper analysis of the underlying value distribution is necessary. Therefore, a quantitative analysis of T2w histograms is a potential alternative.


Assuntos
Doenças Neuromusculares , Água , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Neuromusculares/diagnóstico por imagem , Doenças Neuromusculares/patologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Prótons , Biomarcadores
4.
Skeletal Radiol ; 51(3): 535-547, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34218322

RESUMO

OBJECTIVE: To qualitatively and quantitatively evaluate the 2-year magnetic resonance imaging (MRI) outcome after MPFL reconstruction at the knee and to assess MRI-based risk factors that predispose for inferior clinical and imaging outcomes. MATERIALS AND METHODS: A total of 31 patients with MPFL reconstruction were included (22 ± 6 years, 10 female). MRI was performed preoperatively in 21/31 patients. Two-year follow-up MRI included quantitative cartilage T2 and T1rho relaxation time measurements at the ipsilateral and contralateral knee. T2relative was calculated as T2patellofemoral/T2femorotibial. Morphological evaluation was conducted via WORMS scores. Patellar instability parameters and clinical scores were obtained. Statistical analyses included descriptive statistics, t-tests, multivariate regression models, and correlation analyses. RESULTS: Two years after MPFL reconstruction, all patellae were clinically stable. Mean total WORMS scores improved significantly from baseline to follow-up (mean difference ± SEM, - 4.0 ± 1.3; P = 0.005). As compared to patients with no worsening of WORMS subscores over time (n = 5), patients with worsening of any WORMS subscore (n = 16) had lower trochlear depth, lower facetal ratio, higher tibial-tuberosity to trochlear groove (TTTG) distance, and higher postoperative lateral patellar tilt (P < 0.05). T2relative was higher at the ipsilateral knee (P = 0.010). T2relative was associated with preoperatively higher patellar tilt (P = 0.021) and higher TTTG distance (P = 0.034). TTTG distance, global T2 values, and WORMS progression correlated with clinical outcomes (P < 0.05). CONCLUSION: MPFL reconstruction is an optimal treatment strategy to restore patellar stability. Still, progressive knee joint degeneration and patellofemoral cartilage matrix degeneration may be observed, with patellar instability MRI parameters representing particular risk factors.


Assuntos
Instabilidade Articular , Luxação Patelar , Articulação Patelofemoral , Feminino , Humanos , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamentos Articulares , Imageamento por Ressonância Magnética , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/cirurgia
5.
Int J Obes (Lond) ; 45(9): 2108-2117, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34172828

RESUMO

OBJECTIVE: Cell diameter, area, and volume are established quantitative measures of adipocyte size. However, these different adipocyte sizing parameters have not yet been directly compared regarding their distributions. Therefore, the study aimed to investigate how these adipocyte size measures differ in their distribution and assessed their correlation with anthropometry and laboratory chemistry. In addition, we were interested to investigate the relationship between fat cell size and adipocyte mitochondrial respiratory chain capacity. METHODS: Subcutaneous and visceral histology-based adipocyte size estimates from 188 individuals were analyzed by applying a panel of parameters to describe the underlying cell population. Histology-based adipocyte diameter distributions were compared with adipocyte diameter distributions from collagenase digestion. Associations of mean adipocyte size with body mass index (BMI), glucose, HbA1C, blood lipids as well as mature adipocyte mitochondrial respiration were investigated. RESULTS: All adipocyte area estimates derived from adipose tissue histology were not normally distributed, but rather characterized by positive skewness. The shape of the size distribution depends on the adipocyte sizing parameter and on the method used to determine adipocyte size. Despite different distribution shapes histology-derived adipocyte area, diameter, volume, and surface area consistently showed positive correlations with BMI. Furthermore, associations between adipocyte sizing parameters and glucose, HbA1C, or HDL specifically in the visceral adipose depot were revealed. Increasing subcutaneous adipocyte diameter was negatively correlated with adipocyte mitochondrial respiration. CONCLUSIONS: Despite different underlying size distributions, the correlation with obesity-related traits was consistent across adipocyte sizing parameters. Decreased mitochondrial respiratory capacity with increasing subcutaneous adipocyte diameter could display a novel link between adipocyte hypertrophy and adipose tissue function.


Assuntos
Adipócitos/classificação , Obesidade/fisiopatologia , Pesos e Medidas/normas , Adipócitos/fisiologia , Tecido Adiposo/metabolismo , Adulto , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Pesos e Medidas/instrumentação
6.
Magn Reson Med ; 86(3): 1256-1270, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33797107

RESUMO

PURPOSE: To develop a methodology for probing lipid droplet sizes with a clinical system based on a diffusion-weighted stimulated echo-prepared turbo spin-echo sequence and to validate the methodology in water-fat emulsions and show its applicability in ex vivo adipose-tissue samples. METHODS: A diffusion-weighted stimulated echo-prepared preparation was combined with a single-shot turbo spin-echo readout for measurements at different b-values and diffusion times. The droplet size was estimated with an analytical expression, and three fitting approaches were compared: magnitude-based spatial averaging with voxel-wise residual minimization, complex-based spatial averaging with voxel-wise residual minimization, and complex-based spatial averaging with neighborhood-regularized residual minimization. Simulations were performed to characterize the fitting residual landscape and the approaches' noise performance. The applicability was assessed in oil-in-water emulsions in comparison with laser deflection and in ten human white adipose tissue samples in comparison with histology. RESULTS: The fitting residual landscape showed a minimum valley with increasing extent as the droplet size increased. In phantoms, a very good agreement of the mean droplet size was observed between the diffusion-weighted MRI-based and the laser deflection measurements, showing the best performance with complex-based spatial averaging with neighborhood-regularized residual minimization processing (R2 /P: 0.971/0.014). In the human adipose-tissue samples, complex-based spatial averaging with neighborhood-regularized residual minimization processing showed a significant correlation (R2 /P: 0.531/0.017) compared with histology. CONCLUSION: The proposed acquisition and parameter-estimation methodology was able to probe restricted diffusion effects in lipid droplets. The methodology was validated using phantoms, and its feasibility in measuring an apparent lipid droplet size was demonstrated ex vivo in white adipose tissue.


Assuntos
Imagem de Difusão por Ressonância Magnética , Gotículas Lipídicas , Tecido Adiposo/diagnóstico por imagem , Difusão , Humanos , Imagens de Fantasmas
7.
Cephalalgia ; 41(8): 934-942, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33615841

RESUMO

BACKGROUND: Neck pain is frequent in patients with migraine. Likewise, evidence for inflammatory processes in the trapezius muscles is accumulating. However, non-invasive and objectively assessable correlates are missing in vivo. METHODS: Twenty-one subjects with episodic migraine (mean age: 24.6 ± 3.1 years, 18 females) and 22 controls (mean age: 23.0 ± 2.2 years, 17 females) without any history of headache prospectively underwent physical examination and quantitative magnetic resonance imaging of the trapezius muscles. A T2-prepared turbo spin-echo sequence was acquired for manual segmentation of the trapezius muscles and extraction of mean T2 values. RESULTS: There were no statistically significant differences regarding age, sex, body mass index, or number of myofascial trigger points (mTrPs) between groups. All patients with migraine presented with mTrPs in the trapezius muscles. T2 of the entire trapezius muscles was significantly higher in the migraine group when compared to controls (31.1 ± 0.8 ms vs. 30.1 ± 1.1 ms; p = 0.002). CONCLUSIONS: Elevated T2 values of the trapezius muscles may indicate subtle inflammatory processes within musculature among patients with migraine because T2 increase is likely to stem from edematous changes. Future work may validate this finding in larger cohorts, but muscle T2 might have potential to develop into a viable in vivo biomarker for muscular affection in migraine.


Assuntos
Imageamento por Ressonância Magnética/métodos , Síndromes da Dor Miofascial/fisiopatologia , Cervicalgia/fisiopatologia , Músculos Superficiais do Dorso/diagnóstico por imagem , Músculos Superficiais do Dorso/fisiopatologia , Pontos-Gatilho/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Transtornos de Enxaqueca/diagnóstico por imagem , Músculos do Pescoço/diagnóstico por imagem , Cervicalgia/etiologia , Estudos Prospectivos , Adulto Jovem
8.
J Clin Periodontol ; 48(7): 929-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745132

RESUMO

AIM: To evaluate the correlation between standard clinical findings, radiographic (OPT) and magnetic resonance imaging (MRI) as well as to assess whether MRI is capable of providing additional information related to the severity and extent of periodontal disease. METHODS: 42 patients with generalized periodontitis received pre-interventional MRI scans. These were compared to MR images of a periodontal healthy control group (n = 34). The extent of the osseous oedema, detected by MRI, was set in correlation with clinical periodontitis-associated findings. RESULTS: A highly significant correlation between bone oedema and clinical testings such as probing depth (p < 0.0001) and bleeding on probing (p < 0.0001) was revealed. The oedema exceeded the extent of demineralized bone. Patients with a positive BOP test showed a 2.51-fold increase in risk of already having a bone oedema around the respective tooth even if probing depth was ≤3 mm (logistic binary regression analysis, OR 2.51; 95% CI: 1.54-4.11; p < 0.0001). CONCLUSION: MRI findings correlated with standard clinical findings, and MRI was able to depict intraosseous changes before any osseous defect had occurred.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Imageamento por Ressonância Magnética , Periodontite/diagnóstico por imagem , Estudos Prospectivos
9.
Magn Reson Med ; 84(1): 39-51, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31872934

RESUMO

PURPOSE: Diffusion encoding gradients are known to yield vibrations of the typical clinical MR scanner hardware with a frequency of 20 to 30 Hz, which may lead to signal loss in diffusion-weighted MR measurements. This work proposes to mitigate vibration-induced signal loss by introducing a vibration-matching gradient (VMG) to match vibrational states during the 2 diffusion gradient pulses. THEORY AND METHODS: A theoretical description of displacements induced by gradient switching was introduced and modeled by a 2-mass-spring-damper system. An additional preceding VMG mimicking timing and properties of the diffusion encoding gradients was added to a high b-value diffusion-weighted MR spectroscopy sequence. Laser interferometry was employed to measure 3D displacements of a phantom surface. Lipid ADC was assessed in water-fat phantoms and in vivo in the tibial bone marrow of 3 volunteers. RESULTS: The modeling and the laser interferometer measurements revealed that the displacement curves are more similar during the 2 diffusion gradients with the VMG compared to the standard sequence, resulting in less signal loss of the diffusion-weighted signal. Phantom results showed lipid ADC overestimation up to 119% with the standard sequence and an error of 5.5% with the VMG. An 18% to 35% lower coefficient of variation was obtained for in vivo lipid ADC measurement when employing the VMG. CONCLUSION: The application of the VMG reduces the signal loss introduced by hardware vibrations in a high b-value diffusion-weighted MRS sequence in phantoms and in vivo. Reference measurements based on laser interferometry and mechanical modelling confirmed the findings.


Assuntos
Imagem de Difusão por Ressonância Magnética , Vibração , Difusão , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
10.
J Magn Reson Imaging ; 51(6): 1727-1736, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31875343

RESUMO

BACKGROUND: Muscle water T2 (T2w ) has been proposed as a biomarker to monitor disease activity and therapy effectiveness in patients with neuromuscular diseases (NMD). Multi-echo spin-echo (MESE) is known to be affected by fatty infiltration. A T2 -prepared 3D turbo spin echo (TSE) is an alternative method for T2 mapping, but has been only applied in healthy muscles. PURPOSE: To examine the performance of T2 -prepared 3D TSE in combination with spectral adiabatic inversion recovery (SPAIR) in measuring T2w in fatty infiltrated muscles based on simulations and in vivo measurements in thigh muscles of patients with NMD. STUDY TYPE: Prospective. SUBJECTS: One healthy volunteer, 34 NMD patients. FIELD STRENGTH/SEQUENCE: T2 -prepared stimulated echo acquisition mode (STEAM) magnetic resonance spectroscopy (MRS), SPAIR STEAM MRS, and SPAIR T2 -prepared STEAM MRS were performed in the subcutaneous fat of a healthy volunteer's thigh. T2 mapping based on SPAIR 2D MESE and SPAIR T2 -prepared 3D TSE was performed in the NMD patients' thigh region. Multi-TE STEAM MRS was performed for measuring a reference T2w at different thigh locations. ASSESSMENT: The behavior of the fat spectrum in the SPAIR T2 -prepared 3D TSE was simulated using Bloch simulations. The in vivo T2 results of the imaging methods were compared to the in vivo T2w MRS results. STATISTICAL TESTS: Pearson correlation coefficient with slope and intercept, relative error. RESULTS: The simulated T2 for the SPAIR T2 -prepared 3D TSE sequence remained constant within a relative error of not more than 4% up to a fat fraction of 80%. In vivo T2 values of SPAIR T2 -prepared 3D TSE were in good agreement with the T2w values of STEAM MRS (R = 0.86; slope = 1.12; intercept = -1.41 ms). In vivo T2 values of SPAIR 2D MESE showed large deviations from the T2w values of STEAM MRS (R = 0.14; slope = 0.32; intercept = 38.83 ms). DATA CONCLUSION: The proposed SPAIR T2 -prepared 3D TSE shows reduced sensitivity to fatty infiltration for T2w mapping in the thigh muscles of NMD patients. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1727-1736.


Assuntos
Doenças Neuromusculares , Coxa da Perna , Humanos , Imageamento por Ressonância Magnética , Doenças Neuromusculares/diagnóstico por imagem , Estudos Prospectivos , Coxa da Perna/diagnóstico por imagem , Água
11.
MAGMA ; 33(5): 713-724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32048099

RESUMO

OBJECTIVE: To measure T2 values for magnetic resonance neurography (MRN) of the healthy distal sciatic nerve and compare those to T2 changes in patients with nerve compression. MATERIALS AND METHODS: Twenty-one healthy subjects and five patients with sciatica due to disc herniation underwent MRN using a T2-prepared turbo spin echo (TSE) sequence of the distal sciatic nerve bilaterally. Six and one of those healthy subjects further underwent a commonly used multi-echo spin-echo (MESE) sequence and magnetic resonance spectroscopy (MRS), respectively. RESULTS: T2 values derived from the T2-prepared TSE sequence were 44.6 ± 3.0 ms (left) and 44.5 ± 2.6 ms (right) in healthy subjects and showed good inter-reader reliability. In patients, T2 values of 61.5 ± 6.2 ms (affected side) versus 43.3 ± 2.4 ms (unaffected side) were obtained. T2 values of MRS were in good agreement with measurements from the T2-prepared TSE, but not with those of the MESE sequence. DISCUSSION: A T2-prepared TSE sequence enables precise determination of T2 values of the distal sciatic nerve in agreement with MRS. A MESE sequence tends to overestimate nerve T2 compared to T2 from MRS due to the influence of residual fat on T2 quantification. Our approach may enable to quantitatively assess direct nerve affection related to nerve compression.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Nervo Isquiático
12.
Clin Oral Investig ; 24(8): 2625-2634, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31705309

RESUMO

OBJECTIVE: Since MRI using dedicated imaging sequences has recently shown promising results in direct visualization of the inferior alveolar nerve (IAN) and the lingual nerve (LN) with high spatial resolution, the aim of this study was to generate suitable standard specifications to reliably depict the IAN and LN in MRI and to delineate the anatomy and its variants of these nerves in healthy subjects. METHODS: Thirty healthy volunteers were examined on a 3-T scanner (Elition, Philips Healthcare, Best, the Netherlands). The sequence protocol consisted of 3D STIR, 3D DESS, and 3D T1 FFE "black bone" sequences. RESULTS: The study reconfirmed a good feasibility of direct visualization of proximal and peripheral portions of the IAN and of the proximal course of the LN. The STIR sequence showed the highest apparent signal to noise ratio (aSNR) and best apparent nerve-muscle contrast to noise ratio (aNMCNR) for IAN and for the LN. The applied MRI sequences allowed to differentiate the tissue composition of the neurovascular bundle inside the mandibular canal. CONCLUSION: Dedicated MRI sequence protocols proved effectively to detect the IAN and LN and their course in healthy volunteers. The tissue composition of the mandibular neurovascular bundle was conclusively distinguishable as was the varying topography inside multiple bony channels. CLINICAL RELEVANCE: The presented data on the precise and valid visualization of the IAN and LN have clinical implications in respect to local anesthesia prior to dental treatments in the mandible but also regarding surgical procedures and implant insertion in the molar region.


Assuntos
Nervo Lingual , Nervo Mandibular , Benchmarking , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Mandíbula , Países Baixos , Traumatismos do Nervo Trigêmeo
13.
Magn Reson Med ; 81(6): 3427-3439, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30652361

RESUMO

PURPOSE: The in vivo probing of restricted diffusion effects in large lipid droplets on a clinical MR scanner remains a major challenge due to the need for high b-values and long diffusion times. This work proposes a methodology to probe mean lipid droplet sizes using diffusion-weighted MRS (DW-MRS) at 3T. METHODS: An analytical expression for restricted diffusion was used. Simulations were performed to evaluate the noise performance and the influence of particle size distribution. To validate the method, oil-in-water emulsions were prepared and examined using DW-MRS, laser deflection and light microscopy. The tibia bone marrow was scanned in volunteers to test the method repeatability and characterize microstructural differences at different locations. RESULTS: The simulations showed accurate and precise droplet size estimation when a sufficient SNR is reached with minor dependence on the size distribution. In phantoms, a good correlation between the measured droplet sizes by DW-MRS and by laser deflection (R2 = 0.98; P = 0.01) and microscopy (R2 = 0.99; P < 0.01) measurements was obtained. A mean coefficient of variation of 11.5 % was found for the lipid droplet diameter in vivo. The average diameter was smaller at a proximal (50.1 ± 7.3 µm) compared with a distal tibia location (61.1 ± 6.8 µm) (P < 0.01). CONCLUSION: The presented methods were able to probe restricted diffusion effects in lipid droplets using DW-MRS and to estimate lipid droplet size. The methodology was validated using phantoms and the in vivo feasibility in bone marrow was shown based on a good repeatability and findings in agreement with literature.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Gotículas Lipídicas/química , Processamento de Sinais Assistido por Computador , Tecido Adiposo/diagnóstico por imagem , Adulto , Medula Óssea/diagnóstico por imagem , Simulação por Computador , Humanos , Tamanho da Partícula , Imagens de Fantasmas , Tíbia/diagnóstico por imagem
14.
NMR Biomed ; 32(8): e4111, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180167

RESUMO

Quantitative imaging techniques are emerging in the field of magnetic resonance imaging of neuromuscular diseases (NMD). T2 of water (T2w ) is considered an important imaging marker to assess acute and chronic alterations of the muscle fibers, being generally interpreted as an indicator for "disease activity" in the muscle tissue. To validate the accuracy and robustness of quantitative imaging methods, 1 H magnetic resonance spectroscopy (MRS) can be used as a gold standard. The purpose of the present work was to investigate T2w of remaining muscle tissue in regions of higher proton density fat fraction (PDFF) in 40 patients with defined NMD using multi-TE single-voxel 1 H MRS. Patients underwent MR measurements on a 3 T system to perform a multi-TE single-voxel stimulated echo acquisition method (STEAM) MRS (TE = 11/15/20/25(/35) ms) in regions of healthy, edematous and fatty thigh muscle tissue. Muscle regions for MRS were selected based on T2 -weighted water and fat images of a two-echo 2D Dixon TSE. MRS results were confined to regions with qualitatively defined remaining muscle tissue without edema and high fat content, based on visual grading of the imaging data. The results showed decreased T2w values with increasing PDFF with R2  = 0.45 (p < 10-3 ) (linear fit) and with R2  = 0.51 (exponential fit). The observed dependence of T2w on PDFF should be considered when using T2w as a marker in NMD imaging and when performing single-voxel MRS for T2w in regions enclosing edematous, nonedematous and fatty infiltrated muscle tissue.


Assuntos
Tecido Adiposo/patologia , Músculo Esquelético/patologia , Doenças Neuromusculares/patologia , Água/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prótons
15.
NMR Biomed ; 32(9): e4119, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313867

RESUMO

The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10-3 ) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879-0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20-40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Adulto , Índice de Massa Corporal , Análise de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
16.
J Magn Reson Imaging ; 50(2): 424-434, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30684282

RESUMO

BACKGROUND: Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding-based water-fat MRI-techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2 * result in a lower PDFF and a shorter T2 * in brown compared with white AT. However, AT T2 * values vary widely in the literature and are primarily based on 6-echo data. Increasing the number of echoes in a multiecho gradient-echo acquisition is expected to increase the precision of AT T2 * mapping. PURPOSE: 1) To mitigate issues of current T2 *-measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2 * and PDFF and their relationship using a 20-echo gradient-echo acquisition. STUDY TYPE: Prospective. SUBJECTS: Twenty-one healthy subjects. FIELD STRENGTH/SEQUENCE ASSESSMENT: First, a ground truth signal evolution was simulated from a single-T2 * water-fat model. Second, a time-interleaved 20-echo gradient-echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2 *. Complex-based water-fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. STATISTICAL TESTS: Mann-Whitney test, Wilcoxon signed-rank test and simple linear regression analysis. RESULTS: Both PDFF and T2 * differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2 *: P = 0.03 / P < 0.0001 for 6/20 echoes). 6-echo T2 * demonstrated higher standard deviations and broader ranges than 20-echo T2 *. Regression analyses revealed a strong relationship between PDFF and T2 * values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each). DATA CONCLUSION: The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2 * is considerably affected. Thus, a 20-echo gradient-echo acquisition enables a multiparametric analysis of both AT PDFF and T2 * and may therefore improve MR-based differentiation between white and brown fat. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424-434.


Assuntos
Tecido Adiposo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Nádegas/anatomia & histologia , Clavícula/anatomia & histologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Valores de Referência , Adulto Jovem
17.
Eur Radiol ; 29(2): 599-608, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30014202

RESUMO

OBJECTIVES: Chemical shift encoding-based water-fat MRI derived proton density fat fraction (PDFF) of the paraspinal muscles has been emerging as a surrogate marker in subjects with sarcopenia, lower back pain, injuries and neuromuscular disorders. The present study investigates the performance of paraspinal muscle PDFF and cross-sectional area (CSA) in predicting isometric muscle strength. METHODS: Twenty-six healthy subjects (57.7% women; age: 30 ± 6 years) underwent 3T axial MRI of the lumbar spine using a six-echo 3D spoiled gradient echo sequence for chemical shift encoding-based water-fat separation. Erector spinae and psoas muscles were segmented bilaterally from L2 level to L5 level to determine CSA and PDFF. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer. RESULTS: Significant correlations between CSA and muscle strength measurements were observed for erector spinae muscle CSA (r = 0.40; p = 0.044) and psoas muscle CSA (r = 0.61; p = 0.001) with relative flexion strength. Erector spinae muscle PDFF correlated significantly with relative muscle strength (extension: r = -0.51; p = 0.008; flexion: r = -0.54; p = 0.005). Erector spinae muscle PDFF, but not CSA, remained a statistically significant (p < 0.05) predictor of relative extensor strength in multivariate regression models (R2adj = 0.34; p = 0.002). CONCLUSIONS: PDFF measurements improved the prediction of paraspinal muscle strength beyond CSA. Therefore, chemical shift encoding-based water-fat MRI may be used to detect subtle changes in the paraspinal muscle composition. KEY POINTS: • We investigated the association of paraspinal muscle fat fraction based on chemical shift encoding-based water-fat MRI with isometric strength measurements in healthy subjects. • Erector spinae muscle PDFF correlated significantly with relative muscle strength. • PDFF measurements improved prediction of paraspinal muscle strength beyond CSA.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Água Corporal/diagnóstico por imagem , Contração Isométrica/fisiologia , Músculos Paraespinais/diagnóstico por imagem , Adulto , Estudos Transversais , Feminino , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/fisiopatologia , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Músculos Paraespinais/anatomia & histologia , Músculos Paraespinais/fisiologia , Prótons , Músculos Psoas/anatomia & histologia , Músculos Psoas/diagnóstico por imagem , Músculos Psoas/fisiologia , Adulto Jovem
18.
Handb Exp Pharmacol ; 251: 299-324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30099625

RESUMO

The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco/metabolismo , Imageamento por Ressonância Magnética , Tecido Adiposo Marrom/metabolismo , Animais , Núcleo Celular , Humanos , Temperatura
19.
BMC Musculoskelet Disord ; 20(1): 152, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30961552

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is the modality of choice for diagnosing and monitoring muscular tissue pathologies and bone marrow alterations in the context of lower back pain, neuromuscular diseases and osteoporosis. Chemical shift encoding-based water-fat MRI allows for reliable determination of proton density fat fraction (PDFF) of the muscle and bone marrow. Prior to quantitative data extraction, segmentation of the examined structures is needed. Performed manually, the segmentation process is time consuming and therefore limiting the clinical applicability. Thus, the development of automated segmentation algorithms is an ongoing research focus. CONSTRUCTION AND CONTENT: This database provides ground truth data which may help to develop and test automatic lumbar muscle and vertebra segmentation algorithms. Lumbar muscle groups and vertebral bodies (L1 to L5) were manually segmented in chemical shift encoding-based water-fat MRI and made publically available in the database MyoSegmenTUM. The database consists of water, fat and PDFF images with corresponding segmentation masks for lumbar muscle groups (right/left erector spinae and psoas muscles, respectively) and lumbar vertebral bodies 1-5 of 54 healthy Caucasian subjects. The database is freely accessible online at https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56 . CONCLUSION: A development and testing of segmentation algorithms based on this database may allow the use of quantitative MRI in clinical routine.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Bases de Dados Factuais , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Sistema Musculoesquelético/diagnóstico por imagem , Músculos Paraespinais/diagnóstico por imagem , Tecido Adiposo/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistema Musculoesquelético/metabolismo , Músculos Paraespinais/metabolismo , Água/metabolismo
20.
J Headache Pain ; 20(1): 8, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658563

RESUMO

BACKGROUND: Research in migraine points towards central-peripheral complexity with a widespread pattern of structures involved. Migraine-associated neck and shoulder muscle pain has clinically been conceptualized as myofascial trigger points (mTrPs). However, concepts remain controversial, and the identification of mTrPs is mostly restricted to manual palpation in clinical routine. This study investigates a more objective, quantitative assessment of mTrPs by means of magnetic resonance imaging (MRI) with T2 mapping. METHODS: Ten subjects (nine females, 25.6 ± 5.2 years) with a diagnosis of migraine according to ICHD-3 underwent bilateral manual palpation of the upper trapezius muscles to localize mTrPs. Capsules were attached to the skin adjacent to the palpated mTrPs for marking. MRI of the neck and shoulder region was performed at 3 T, including a T2-prepared, three-dimensional (3D) turbo spin echo (TSE) sequence. The T2-prepared 3D TSE sequence was used to generate T2 maps, followed by manual placement of regions of interest (ROIs) covering the trapezius muscles of both sides and signal alterations attributable to mTrPs. RESULTS: The trapezius muscles showed an average T2 value of 27.7 ± 1.4 ms for the right and an average T2 value of 28.7 ± 1.0 ms for the left side (p = 0.1055). Concerning signal alterations in T2 maps attributed to mTrPs, nine values were obtained for the right (32.3 ± 2.5 ms) and left side (33.0 ± 1.5 ms), respectively (p = 0.0781). When comparing the T2 values of the trapezius muscles to the T2 values extracted from the signal alterations attributed to the mTrPs of the ipsilateral side, we observed a statistically significant difference (p = 0.0039). T2 hyperintensities according to visual image inspection were only reported in four subjects for the right and in two subjects for the left side. CONCLUSIONS: Our approach enables the identification of mTrPs and their quantification in terms of T2 mapping even in the absence of qualitative signal alterations. Thus, it (1) might potentially challenge the current gold-standard method of physical examination of mTrPs, (2) could allow for more targeted and objectively verifiable interventions, and (3) could add valuable models to understand better central-peripheral mechanisms in migraine.


Assuntos
Transtornos de Enxaqueca/diagnóstico por imagem , Músculos Superficiais do Dorso/diagnóstico por imagem , Pontos-Gatilho/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Palpação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa