Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38383497

RESUMO

Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that the posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we manually defined 4,362 PMC sulci in 432 hemispheres in 216 human participants (50.5% female) and found that these smaller putative tertiary sulci showed more age- and AD-related thinning than larger, more consistent sulci, with the strongest effects for two newly uncovered sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci was most associated with memory and executive function scores in older adults. These findings lend support to the retrogenesis hypothesis linking brain development and aging and provide new neuroanatomical targets for future studies of aging and AD.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Envelhecimento/patologia , Cognição , Atrofia/patologia , Imageamento por Ressonância Magnética
2.
J Neurosci ; 43(14): 2552-2567, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828638

RESUMO

Previous findings show that the morphology of folds (sulci) of the human cerebral cortex flatten during postnatal development. However, previous studies did not consider the relationship between sulcal morphology and cognitive development in individual participants. Here, we fill this gap in knowledge by leveraging cross-sectional morphologic neuroimaging data in the lateral PFC (LPFC) from individual human participants (6-36 years old, males and females; N = 108; 3672 sulci), as well as longitudinal morphologic and behavioral data from a subset of child and adolescent participants scanned at two time points (6-18 years old; N = 44; 2992 sulci). Manually defining thousands of sulci revealed that LPFC sulcal morphology (depth, surface area, and gray matter thickness) differed between children (6-11 years old)/adolescents (11-18 years old) and young adults (22-36 years old) cross-sectionally, but only cortical thickness showed differences across childhood and adolescence and presented longitudinal changes during childhood and adolescence. Furthermore, a data-driven approach relating morphology and cognition identified that longitudinal changes in cortical thickness of four left-hemisphere LPFC sulci predicted longitudinal changes in reasoning performance, a higher-level cognitive ability that relies on LPFC. Contrary to previous findings, these results suggest that sulci may flatten either after this time frame or over a longer longitudinal period of time than previously presented. Crucially, these results also suggest that longitudinal changes in the cortex within specific LPFC sulci are behaviorally meaningful, providing targeted structures, and areas of the cortex, for future neuroimaging studies examining the development of cognitive abilities.SIGNIFICANCE STATEMENT Recent work has shown that individual differences in neuroanatomical structures (indentations, or sulci) within the lateral PFC are behaviorally meaningful during childhood and adolescence. Here, we describe how specific lateral PFC sulci develop at the level of individual participants for the first time: from both cross-sectional and longitudinal perspectives. Further, we show, also for the first time, that the longitudinal morphologic changes in these structures are behaviorally relevant. These findings lay the foundation for a future avenue to precisely study the development of the cortex and highlight the importance of studying the development of sulci in other cortical expanses and charting how these changes relate to the cognitive abilities those areas support at the level of individual participants.


Assuntos
Córtex Cerebral , Cognição , Masculino , Criança , Feminino , Adolescente , Adulto Jovem , Humanos , Adulto , Estudos Transversais , Resolução de Problemas , Neuroimagem , Imageamento por Ressonância Magnética
3.
Cereb Cortex ; 33(5): 1799-1813, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35589102

RESUMO

The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown-either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Adolescente , Criança , Humanos , Córtex Cerebral/anatomia & histologia , Córtex Pré-Frontal , Cognição
4.
J Cogn Neurosci ; 35(11): 1846-1867, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677051

RESUMO

The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid specific. Although recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from two samples encompassing 82 young adult humans (aged 22-36 years) and show that the dorsal and ventral components of the paraintermediate frontal sulcus, or pimfs, present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in LPFC anatomy and function, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and suggest that future individual-level parcellations could benefit from incorporating sulcal anatomy when delineating LPFC cortical regions.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Adulto Jovem , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Córtex Pré-Frontal/diagnóstico por imagem , Neuroimagem
5.
Neuroimage ; 265: 119765, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427753

RESUMO

The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Mapeamento Encefálico , Face , Reconhecimento Visual de Modelos , Estimulação Luminosa
6.
J Anat ; 243(6): 1066-1068, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458159

RESUMO

An average hemisphere of the human cerebral cortex contains over 100 individual folds (sulci). Many of these sulci have been overlooked by classic and modern atlases and neuroimaging tools. These sulci also show prominent individual differences: They can be broken into variable "complexes" and some sulci may not be present altogether.


Assuntos
Cérebro , Individualidade , Humanos , Córtex Cerebral , Neuroimagem , Membrana Celular
7.
Nat Rev Neurosci ; 24(9): 521, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400609
8.
J Neurosci ; 41(10): 2229-2244, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33478989

RESUMO

Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multimodal approach and manually defining 936 neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three components that differ in their myelin content, resting-state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each pmfs component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared with superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share pmfs probabilistic sulcal maps with the field.SIGNIFICANCE STATEMENT Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared with other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.


Assuntos
Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Conectoma/métodos , Feminino , Humanos , Masculino
9.
PLoS Biol ; 17(7): e3000362, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31269028

RESUMO

Human visual cortex is organized with striking consistency across individuals. While recent findings demonstrate an unexpected coupling between functional and cytoarchitectonic regions relative to the folding of human visual cortex, a unifying principle linking these anatomical and functional features of the cortex remains elusive. To fill this gap in knowledge, we combined independent and ground truth measurements of cytoarchitectonic regions and genetic tissue characterization within human occipitotemporal cortex. Using a data-driven approach, we examined whether differential gene expression among cytoarchitectonic areas could contribute to the arealization of occipitotemporal cortex into a hierarchy based on transcriptomics. This approach revealed two opposing gene expression gradients: one that contains a series of genes with expression magnitudes that ascend from posterior (e.g., areas human occipital [hOc]1, hOc2, hOc3, etc.) to anterior cytoarchitectonic areas (e.g., areas fusiform gyrus [FG]1-FG4) and another that contains a separate series of genes that show a descending gradient from posterior to anterior areas. Using data from the living human brain, we show that each of these gradients correlates strongly with variations in measures related to either thickness or myelination of cortex, respectively. We further reveal that these genetic gradients emerge along unique trajectories in human development: the ascending gradient is present at 10-12 gestational weeks, while the descending gradient emerges later (19-24 gestational weeks). Interestingly, it is not until early childhood (before 5 years of age) that the two expression gradients achieve their adult-like mean expression values. Additional analyses in nonhuman primates (NHPs) reveal that homologous genes do not generate the same ascending and descending expression gradients as in humans. We discuss these findings relative to previously proposed hierarchies based on functional and cytoarchitectonic features of visual cortex. Altogether, these findings bridge macroscopic features of human cytoarchitectonic areas in visual cortex with microscopic features of cellular organization and genetic expression, which, despite the complexity of this multiscale correspondence, can be described by a sparse subset (approximately 200) of genes. These findings help pinpoint the genes contributing to healthy cortical development and explicate the cortical biology distinguishing humans from other primates, as well as establishing essential groundwork for understanding future work linking genetic mutations with the function and development of the human brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Córtex Visual/metabolismo , Adulto , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Criança , Análise por Conglomerados , Evolução Molecular , Feminino , Humanos , Macaca , Masculino , Córtex Visual/embriologia , Córtex Visual/crescimento & desenvolvimento
10.
Cereb Cortex ; 31(1): 48-61, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954410

RESUMO

The evolution and development of anatomical-functional relationships in the cerebral cortex is of major interest in neuroscience. Here, we leveraged the fact that a functional region selective for visual scenes is located within a sulcus in the medial ventral temporal cortex (VTC) in both humans and macaques to examine the relationship between sulcal depth and place selectivity in the medial VTC across species and age groups. To do so, we acquired anatomical and functional magnetic resonance imaging scans in 9 macaques, 26 human children, and 28 human adults. Our results revealed a strong structural-functional coupling between sulcal depth and place selectivity across age groups and species in which selectivity was strongest near the deepest sulcal point (the sulcal pit). Interestingly, this coupling between sulcal depth and place selectivity strengthens from childhood to adulthood in humans. Morphological analyses suggest that the stabilization of sulcal-functional coupling in adulthood may be due to sulcal deepening and areal expansion with age as well as developmental differences in cortical curvature at the pial, but not the white matter surfaces. Our results implicate sulcal features as functional landmarks in high-level visual cortex and highlight that sulcal-functional relationships in the medial VTC are preserved between macaques and humans despite differences in cortical folding.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Mapeamento Encefálico , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 116(41): 20750-20759, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548375

RESUMO

Human cortex appears to thin during childhood development. However, the underlying microstructural mechanisms are unknown. Using functional magnetic resonance imaging (fMRI), quantitative MRI (qMRI), and diffusion MRI (dMRI) in children and adults, we tested what quantitative changes occur to gray and white matter in ventral temporal cortex (VTC) from childhood to adulthood, and how these changes relate to cortical thinning. T1 relaxation time from qMRI and mean diffusivity (MD) from dMRI provide independent and complementary measurements of microstructural properties of gray and white matter tissue. In face- and character-selective regions in lateral VTC, T1 and MD decreased from age 5 to adulthood in mid and deep cortex, as well as in their adjacent white matter. T1 reduction also occurred longitudinally in children's brain regions. T1 and MD decreases 1) were consistent with tissue growth related to myelination, which we verified with adult histological myelin stains, and 2) were correlated with apparent cortical thinning. In contrast, in place-selective cortex in medial VTC, we found no development of T1 or MD after age 5, and thickness was related to cortical morphology. These findings suggest that lateral VTC likely becomes more myelinated from childhood to adulthood, affecting the contrast of MR images and, in turn, the apparent gray-white boundary. These findings are important because they suggest that VTC does not thin during childhood but instead gets more myelinated. Our data have broad ramifications for understanding both typical and atypical brain development using advanced in vivo quantitative measurements and clinical conditions implicating myelin.


Assuntos
Encéfalo/crescimento & desenvolvimento , Substância Cinzenta/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Córtex Visual/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Adulto , Encéfalo/anatomia & histologia , Criança , Pré-Escolar , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Córtex Visual/anatomia & histologia , Córtex Visual/metabolismo , Substância Branca/anatomia & histologia , Substância Branca/metabolismo , Adulto Jovem
12.
J Neurosci ; 40(15): 3008-3024, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32094202

RESUMO

Human ventral temporal cortex (VTC) is critical for visual recognition. It is thought that this ability is supported by large-scale patterns of activity across VTC that contain information about visual categories. However, it is unknown how category representations in VTC are organized at the submillimeter scale and across cortical depths. To fill this gap in knowledge, we measured BOLD responses in medial and lateral VTC to images spanning 10 categories from five domains (written characters, bodies, faces, places, and objects) at an ultra-high spatial resolution of 0.8 mm using 7 Tesla fMRI in both male and female participants. Representations in lateral VTC were organized most strongly at the general level of domains (e.g., places), whereas medial VTC was also organized at the level of specific categories (e.g., corridors and houses within the domain of places). In both lateral and medial VTC, domain-level and category-level structure decreased with cortical depth, and downsampling our data to standard resolution (2.4 mm) did not reverse differences in representations between lateral and medial VTC. The functional diversity of representations across VTC partitions may allow downstream regions to read out information in a flexible manner according to task demands. These results bridge an important gap between electrophysiological recordings in single neurons at the micron scale in nonhuman primates and standard-resolution fMRI in humans by elucidating distributed responses at the submillimeter scale with ultra-high-resolution fMRI in humans.SIGNIFICANCE STATEMENT Visual recognition is a fundamental ability supported by human ventral temporal cortex (VTC). However, the nature of fine-scale, submillimeter distributed representations in VTC is unknown. Using ultra-high-resolution fMRI of human VTC, we found differential distributed visual representations across lateral and medial VTC. Domain representations (e.g., faces, bodies, places, characters) were most salient in lateral VTC, whereas category representations (e.g., corridors/houses within the domain of places) were equally salient in medial VTC. These results bridge an important gap between electrophysiological recordings in single neurons at a micron scale and fMRI measurements at a millimeter scale.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto , Simulação por Computador , Fenômenos Eletrofisiológicos , Reconhecimento Facial/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Estimulação Luminosa , Desempenho Psicomotor , Leitura , Reconhecimento Psicológico/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
13.
J Cogn Neurosci ; 33(9): 1698-1715, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375416

RESUMO

Stuss considered the human PFC as a "cognitive globe" [Stuss, D. T., & Benson, D. F. Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 3-28, 1984] on which functions of the frontal lobe could be mapped. Here, we discuss classic and recent findings regarding the evolution, development, function, and cognitive role of shallow indentations or tertiary sulci in PFC, with the goal of using tertiary sulci to map the "cognitive globe" of PFC. First, we discuss lateral PFC (LPFC) tertiary sulci in classical anatomy and modern neuroimaging, as well as their development, with a focus on those within the middle frontal gyrus. Second, we discuss tertiary sulci in comparative neuroanatomy, focusing on primates. Third, we summarize recent findings showing the utility of tertiary sulci for understanding structural-functional relationships with functional network insights in ventromedial PFC and LPFC. Fourth, we revisit and update unresolved theoretical perspectives considered by C. Vogt and O. Vogt (Allgemeinere ergebnisse unserer hirnforschung. Journal für Psychologie und Neurologie, 25, 279-462, 1919) and F. Sanides (Structure and function of the human frontal lobe. Neuropsychologia, 2, 209-219, 1964) that tertiary sulci serve as landmarks for cortical gradients. Together, the consideration of these classic and recent findings indicate that tertiary sulci are situated in a unique position within the complexity of the "cognitive globe" of PFC: They are the smallest and shallowest of sulci in PFC, yet can offer insights that bridge spatial scales (microns to networks), modalities (functional connectivity to behavior), and species. As such, the map of tertiary sulci within each individual participant serves as a coordinate system specific to that individual on which functions may be further mapped. We conclude with new theoretical and methodological questions that, if answered in future research, will likely lead to mechanistic insight regarding the structure and function of human LPFC.


Assuntos
Neuroimagem , Córtex Pré-Frontal , Animais , Cognição , Lobo Frontal , Humanos , Motivação
14.
Neuroimage ; 229: 117758, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497773

RESUMO

The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N=60) and adult (N=36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling).


Assuntos
Conectoma/métodos , Análise de Dados , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
15.
Cereb Cortex ; 30(9): 4882-4898, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32372098

RESUMO

We have an amazing ability to categorize objects in the world around us. Nevertheless, how cortical regions in human ventral temporal cortex (VTC), which is critical for categorization, support this behavioral ability, is largely unknown. Here, we examined the relationship between neural responses and behavioral performance during the categorization of morphed silhouettes of faces and hands, which are animate categories processed in cortically adjacent regions in VTC. Our results reveal that the combination of neural responses from VTC face- and body-selective regions more accurately explains behavioral categorization than neural responses from either region alone. Furthermore, we built a model that predicts a person's behavioral performance using estimated parameters of brain-behavior relationships from a different group of people. Moreover, we show that this brain-behavior model generalizes to adjacent face- and body-selective regions in lateral occipitotemporal cortex. Thus, while face- and body-selective regions are located within functionally distinct domain-specific networks, cortically adjacent regions from both networks likely integrate neural responses to resolve competing and perceptually ambiguous information from both categories.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino
16.
Cereb Cortex ; 30(11): 5988-6003, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583847

RESUMO

Repeated stimulus presentations commonly produce decreased neural responses-a phenomenon known as repetition suppression (RS) or adaptation-in ventral temporal cortex (VTC) of humans and nonhuman primates. However, the temporal features of RS in human VTC are not well understood. To fill this gap in knowledge, we utilized the precise spatial localization and high temporal resolution of electrocorticography (ECoG) from nine human subjects implanted with intracranial electrodes in the VTC. The subjects viewed nonrepeated and repeated images of faces with long-lagged intervals and many intervening stimuli between repeats. We report three main findings: 1) robust RS occurs in VTC for activity in high-frequency broadband (HFB), but not lower-frequency bands; 2) RS of the HFB signal is associated with lower peak magnitude (PM), lower total responses, and earlier peak responses; and 3) RS effects occur early within initial stages of stimulus processing and persist for the entire stimulus duration. We discuss these findings in the context of early and late components of visual perception, as well as theoretical models of repetition suppression.


Assuntos
Eletrocorticografia/métodos , Habituação Psicofisiológica/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino
18.
Nat Rev Neurosci ; 15(8): 536-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962370

RESUMO

Visual categorization is thought to occur in the human ventral temporal cortex (VTC), but how this categorization is achieved is still largely unknown. In this Review, we consider the computations and representations that are necessary for categorization and examine how the microanatomical and macroanatomical layout of the VTC might optimize them to achieve rapid and flexible visual categorization. We propose that efficient categorization is achieved by organizing representations in a nested spatial hierarchy in the VTC. This spatial hierarchy serves as a neural infrastructure for the representational hierarchy of visual information in the VTC and thereby enables flexible access to category information at several levels of abstraction.


Assuntos
Lobo Temporal/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Humanos , Modelos Neurológicos , Estimulação Luminosa , Lobo Temporal/citologia , Vias Visuais/citologia
19.
Neuroimage ; 173: 604-609, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471101

RESUMO

pFs is a functionally-defined region in the human brain that is involved in recognizing objects. A recent trend refers to pFs as the posterior fusiform sulcus, which is a neuroanatomical structure that does not exist. Here, we correct this mistake. To achieve this goal, we first recount the original definitions of pFs and then review the identification of sulci within and surrounding the fusiform gyrus (FG) including the mid-fusiform sulcus (MFS), which is a tertiary sulcus within the FG. We highlight that tertiary sulci, such as the MFS, are often absent from brain atlases, which complicates the accurate localization of functional regions, as well as the understanding of structural-functional relationships in ventral temporal cortex (VTC). When considering the location of object-selective pFs from previously published data relative to the sulci surrounding the FG, as well as the MFS, we illustrate that (1) pFs spans several macroanatomical structures, which is consistent with the original definitions of pFs (Grill-Spector et al., 1999, 2000), and (2) the topological relationship between pFs and MFS has both stable and variable features. To prevent future confusion regarding the anatomical location of functional regions within VTC, as well as to complement tools that automatically identify sulci surrounding the FG, we provide a method to automatically identify the MFS in individual brains using FreeSurfer. Finally, we highlight the benefits of using cortical surface reconstructions in large datasets to identify and quantify tertiary sulci compared to classic dissection methods because the latter often fail to differentiate tertiary sulci from shallow surface indentations produced by veins and arteries. Altogether, we propose that the inclusion of definitions and labels for tertiary sulci in neuroanatomical atlases and neuroimaging software packages will enhance understanding of functional-structural relationships throughout the human brain.


Assuntos
Lobo Temporal/anatomia & histologia , Humanos
20.
Neuroimage ; 170: 257-270, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28213120

RESUMO

The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations.


Assuntos
Atlas como Assunto , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Lobo Occipital/citologia , Lobo Occipital/diagnóstico por imagem , Lobo Temporal/citologia , Lobo Temporal/diagnóstico por imagem , Percepção Visual , Adulto , Feminino , Humanos , Masculino , Lobo Occipital/patologia , Lobo Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa