Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
2.
Nature ; 590(7846): 457-462, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568812

RESUMO

In contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function. Here we develop approaches for imaging myelopoiesis in mice, and generate atlases showing the differentiation of granulocytes, monocytes and dendritic cells. The generation of granulocytes and dendritic cells-monocytes localizes to different blood-vessel structures known as sinusoids, and displays lineage-specific spatial and clonal architectures. Acute systemic infection with Listeria monocytogenes induces lineage-specific progenitor clusters to undergo increased self-renewal of progenitors, but the different lineages remain spatially separated. Monocyte-dendritic cell progenitors (MDPs) map with nonclassical monocytes and conventional dendritic cells; these localize to a subset of blood vessels expressing a major regulator of myelopoiesis, colony-stimulating factor 1 (CSF1, also known as M-CSF)1. Specific deletion of Csf1 in endothelium disrupts the architecture around MDPs and their localization to sinusoids. Subsequently, there are fewer MDPs and their ability to differentiate is reduced, leading to a loss of nonclassical monocytes and dendritic cells during both homeostasis and infection. These data indicate that local cues produced by distinct blood vessels are responsible for the spatial organization of definitive blood cell differentiation.


Assuntos
Rastreamento de Células/métodos , Células Mieloides/citologia , Mielopoese , Coloração e Rotulagem/métodos , Animais , Atlas como Assunto , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Linhagem da Célula , Autorrenovação Celular , Células Dendríticas/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Granulócitos/citologia , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/citologia , Células Mieloides/metabolismo
3.
Mol Vis ; 25: 237-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516309

RESUMO

Purpose: The purpose of this study is to examine the expression profile of genes related to integrin-mediated phagocytosis that are altered by dexamethasone (DEX) and/or αvß3 integrin signaling to gain a better understanding of the molecular basis of phagocytosis and the pathophysiology of glucocorticoid-induced ocular hypertension. Methods: RNA and cell lysates were obtained from human trabecular meshwork (HTM) cells incubated with and without DEX for 4-5 d. The relative level of gene expression was evaluated using the Affymetrix Gene Chip® human gene microarray and quantitative PCR (qPCR). Changes in protein expression were validated using western blots or FACS analyses. The involvement of proteins in phagocytosis was determined using siRNA to knock down the expression of these proteins in an immortalized TM-1 cell line. Changes in the phagocytic activity were measured using pHrodo™-labeled S. aureus bioparticles followed by immunofluorescence microscopy. The effect of αvß3 integrin expression and activity on GULP1 mRNA levels was measured using qPCR in TM-1 cells overexpressing wild type or constitutively active αvß3 integrin. Results: Gene microarrays revealed statistically significant differences (>2 fold) in the expression of seven genes known to be involved in phagocytosis. Three genes (CD36, ABR, and GULP1) were downregulated, while four genes (ITGB3, CHN1, PIK3R1, and MFGE8) were upregulated. The genes were either associated with modulating RAC1 activity (ABR and CHN1) or integrin signaling (CD36, GULP1, ITGB3, PIK3R1, and MFGE8). Another gene, SIRPA, was also downregulated (1.6 fold) but only in one cell strain. qPCR and western blot analyses verified that DEX caused a decrease in SIRPA and GULP1 mRNA and their protein levels, while levels of CHN1 mRNA and its protein were upregulated by DEX. qPCR showed that although ABR mRNA was downregulated compared to non-treated controls after 5 d of treatment with DEX, no change at the protein level was detected. qPCR analysis also revealed that DEX caused an increase in MFGE8 mRNA levels. The levels of CD36 mRNA and protein varied between cell strains treated with DEX and were not statistically different compared to controls. The knockdown of GULP1 and ABR using siRNAs decreased phagocytosis by 40%. Interestingly, GULP1 mRNA levels were also decreased by 60% when αvß3 integrin was overexpressed in TM-1 cells. Conclusion: The DEX-induced inhibition of phagocytosis may be caused by the downregulation of ABR and GULP1 disrupting the αvß5 integrin/RAC1-mediated engulfment pathway. The downregulation of GULP1 by αvß3 integrin further suggests that this integrin may be a negative regulator of phagocytosis by transcriptionally downregulating proteins needed for phagocytosis. In summary, these results represent new insights into the effects of glucocorticoids and integrin signaling on the phagocytic process in the TM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dexametasona/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Fagocitose , Proteômica , Malha Trabecular/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linhagem Celular , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Integrina beta3/metabolismo , Ligantes , Masculino , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Fagocitose/efeitos dos fármacos , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Vitronectina/metabolismo , Staphylococcus aureus/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
BMC Cancer ; 16: 713, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27595989

RESUMO

BACKGROUND: Loss of Amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) drives rapid proliferation of bladder cancer cells by upregulating Hyaluronic acid(HA) Synthase (HAS2) mediated HA synthesis. However the role of HA receptors CD44 and Hyaluronan Mediated Motility Receptor (RHAMM) in regulating the growth of bladder cancer cells driven by loss of AGL has not been studied. METHODS: Western blot analysis and Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was carried out to study cellular apoptosis with HAS2, CD44 and RHAMM loss in bladder cancer cells with and without AGL expression. Proliferation and softagar assays were carried out to study cellular anchorage dependent and independent growth. Clinicopathologic analysis was carried out on bladder cancer patient datasets. RESULTS: Higher amounts of cleaved Cas3, Cas9 and PARP was observed in AGL low bladder cancer cell with loss of HAS2, CD44 or RHAMM. TUNEL staining showed more apoptotic cells with loss of HAS2, CD44 or RHAMM in AGL low bladder cancer cells. This revealed that bladder cancer cells whose aggressive growth is mediated by loss of AGL are susceptible to apoptosis with loss of HAS2, CD44 or RHAMM. Interestingly loss of either CD44 or RHAMM induces apoptosis in different low AGL expressing bladder cancer cell lines. Growth assays showed that loss of CD44 and RHAMM predominantly inhibit anchorage dependent and independent growth of AGL low bladder cancer cells. Clinicopathologic analysis revealed that high RHAMM mRNA expression is a marker of poor patient outcome in bladder cancer and patients with high RHAMM and low AGL tumor mRNA expression have poor survival. CONCLUSION: Our findings strongly point to the importance of the HAS2-HA-CD44/RHAMM pathway for rapid growth of bladder cancer cells with loss of AGL and provides rational for targeting this pathway at various steps for "personalized" treatment of bladder cancer patients based of their AGL expression status.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Receptores de Hialuronatos/metabolismo , Neoplasias da Bexiga Urinária/patologia , Western Blotting , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Glucuronosiltransferase/metabolismo , Humanos , Hialuronan Sintases , Marcação In Situ das Extremidades Cortadas , Reação em Cadeia da Polimerase , Neoplasias da Bexiga Urinária/metabolismo
5.
Cell Rep ; 43(5): 114129, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38640063

RESUMO

The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.


Assuntos
Macrófagos , Nociceptividade , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Feminino , Humanos , Masculino , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL , Inflamação/patologia , Memória/fisiologia
6.
Cell Rep ; 42(4): 112352, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027297

RESUMO

Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.


Assuntos
Nascimento Prematuro , Animais , Feminino , Camundongos , Gravidez , Fator Ativador de Células B , Inflamação , Transdução de Sinais , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
7.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824978

RESUMO

The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.

8.
Oncotarget ; 9(24): 16718-16730, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29682180

RESUMO

Glycogen debranching enzyme (AGL) and Glycogen phosphorylase (PYG) are responsible for glycogen breakdown. We have earlier shown that AGL is a regulator of bladder tumor growth. Here we investigate the role of AGL in non-small cell lung cancers (NSCLC). Short hairpin RNA (shRNA) driven knockdown of AGL resulted in increased anchorage independent and xenograft growth of NSCLC cells. We further establish that an increase in hyaluronic acid (HA) synthesis driven by Hyaluronic Acid Synthase 2 (HAS2) is critical for anchorage independent growth of NSCLC cells with AGL loss. Using gene knockdown approach against HAS2 and by using 4-methylumbelliferone (4MU), an inhibitor of HA synthesis, we show that HA synthesis is critical for growth of NSCLC cells that have lost AGL. We further show NSCLC cells without AGL expression are dependent on RHAMM for HA signaling and growth. Analysis of NSCLC patient datasets established that patients with low AGL/high HAS2 or low AGL/high RHAMM mRNA expression have poor overall survival compared to patients with high AGL/low HAS2 or high AGL/low RHAMM expression. We show for the first time that loss of AGL promotes anchorage independent growth of NSCLC cells. We further show that HAS2 driven HA synthesis and signaling via RHAMM is critical in regulating growth of these cancer cells with AGL loss. Further patients presenting with low AGL and HAS2 or RHAMM over expressing tumors might present the ideal cohort who would respond to inhibitors of HA synthesis and signaling.

9.
Biomed Rep ; 6(6): 595-598, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584628

RESUMO

Bladder cancer is the most common malignancy of the urinary system, however the molecular pathways underlying this disease are incompletely understood. To understand new regulators of bladder cancer progression, the authors carried out a functional genomic screen which identified glycogen debranching enzyme (AGL) as a novel regulator of bladder cancer growth. Glycogen debranching enzyme is involved in glycogen breakdown and germline loss of function mutation of this gene leads to glycogen storage disease type III. To the best of the authors' knowledge, the present study is the first to demonstrate that loss of AGL leads to aggressive bladder tumor growth. AGL mRNA and protein expression in bladder tumors serve as a prognostic marker for patients. Interestingly, AGL's participation in regulating tumor growth is independent of its enzymatic function and involvement with glycogen metabolism in general. Detailed metabolomics and transcriptomic analysis indicated that increases in glucose metabolism, glycine synthesis driven by serine hydroxymethyltransferase 2 and increases in hyaluronic acid synthase 2-driven HA synthesis are major contributors of aggressive bladder tumor growth with loss of AGL. However, the detailed mechanism of how AGL regulates the above mentioned metabolic and genetic pathways is unknown and is being investigated. The present review focuses on AGL's involvement in bladder cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa