Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187991

RESUMO

Vibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States. The draft genomes of 132 North American clinical and oyster V. parahaemolyticus isolates were sequenced to investigate their phylogenetic and biogeographic relationships. The majority of oyster isolate sequence types (STs) were from a single harvest location; however, four were identified from multiple locations. There was population structure along the Gulf and Atlantic Coasts of North America, with what seemed to be a hub of genetic variability along the Gulf Coast, with some of the same STs occurring along the Atlantic Coast and one shared between the coastal waters of the Gulf and those of Washington State. Phylogenetic analyses found nine well-supported clades. Two clades were composed of isolates from both clinical and oyster sources. Four were composed of isolates entirely from clinical sources, and three were entirely from oyster sources. Each single-source clade consisted of one ST. Some human isolates lack tdh, trh, and some type III secretion system (T3SS) genes, which are established virulence genes of V. parahaemolyticus Thus, these genes are not essential for pathogenicity. However, isolates in the monophyletic groups from clinical sources were enriched in several categories of genes compared to those from monophyletic groups of oyster isolates. These functional categories include cell signaling, transport, and metabolism. The identification of genes in these functional categories provides a basis for future in-depth pathogenicity investigations of V. parahaemolyticusIMPORTANCEVibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States and is frequently associated with shellfish consumption. This study contributes to our knowledge of the biogeography and functional genomics of this species around North America. STs shared between the Gulf Coast and the Atlantic seaboard as well as Pacific waters suggest possible transport via oceanic currents or large shipping vessels. STs frequently isolated from humans but rarely, if ever, isolated from the environment are likely more competitive in the human gut than other STs. This could be due to additional functional capabilities in areas such as cell signaling, transport, and metabolism, which may give these isolates an advantage in novel nutrient-replete environments such as the human gut.


Assuntos
Vibrio parahaemolyticus/genética , Animais , Monitoramento Biológico , Genes Bacterianos , Genoma Bacteriano , Humanos , América do Norte , Ostreidae/microbiologia , Filogenia , Vibrioses/microbiologia , Vibrio parahaemolyticus/isolamento & purificação , Virulência/genética , Sequenciamento Completo do Genoma
2.
Curr Issues Mol Biol ; 36: 89-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31596250

RESUMO

Traditional taxonomy in biology assumes that life is organized in a simple tree. Attempts to classify microorganisms in this way in the genomics era led microbiologists to look for finite sets of 'core' genes that uniquely group taxa as clades in the tree. However, the diversity revealed by large-scale whole genome sequencing is calling into question the long-held model of a hierarchical tree of life, which leads to questioning of the definition of a species. Large-scale studies of microbial genome diversity reveal that the cumulative number of new genes discovered increases with the number of genomes studied as a power law and subsequently leads to the lack of evidence for a unique core genome within closely related organisms. Sampling 'enough' new genomes leads to the discovery of a replacement or alternative to any gene. This power law behaviour points to an underlying self-organizing critical process that may be guided by mutation and niche selection. Microbes in any particular niche exist within a local web of organism interdependence known as the microbiome. The same mechanism that underpins the macro-ecological scaling first observed by MacArthur and Wilson also applies to microbial communities. Recent metagenomic studies of a food microbiome demonstrate the diverse distribution of community members, but also genotypes for a single species within a more complex community. Collectively, these results suggest that traditional taxonomic classification of bacteria could be replaced with a quasispecies model. This model is commonly accepted in virology and better describes the diversity and dynamic exchange of genes that also hold true for bacteria. This model will enable microbiologists to conduct population-scale studies to describe microbial behaviour, as opposed to a single isolate as a representative.


Assuntos
Bactérias/genética , Microbiota/genética , Filogenia , Bactérias/classificação , Bactérias/patogenicidade , Bases de Dados Genéticas , Ecologia , Evolução Molecular , Variação Genética , Genoma Bacteriano , Metagenoma , Filogeografia/métodos , Sequenciamento Completo do Genoma
3.
Appl Environ Microbiol ; 82(24): 7165-7175, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736787

RESUMO

Campylobacter is the leading cause of human gastroenteritis worldwide. Wild birds, including American crows, are abundant in urban, suburban, and agricultural settings and are likely zoonotic vectors of Campylobacter Their proximity to humans and livestock increases the potential spreading of Campylobacter via crows between the environment, livestock, and humans. However, no studies have definitively demonstrated that crows are a vector for pathogenic Campylobacter We used genomics to evaluate the zoonotic and pathogenic potential of Campylobacter from crows to other animals with 184 isolates obtained from crows, chickens, cows, sheep, goats, humans, and nonhuman primates. Whole-genome analysis uncovered two distinct clades of Campylobacter jejuni genotypes; the first contained genotypes found only in crows, while a second genotype contained "generalist" genomes that were isolated from multiple host species, including isolates implicated in human disease, primate gastroenteritis, and livestock abortion. Two major ß-lactamase genes were observed frequently in these genomes (oxa-184, 55%, and oxa-61, 29%), where oxa-184 was associated only with crows and oxa-61 was associated with generalists. Mutations in gyrA, indicative of fluoroquinolone resistance, were observed in 14% of the isolates. Tetracycline resistance (tetO) was present in 22% of the isolates, yet it occurred in 91% of the abortion isolates. Virulence genes were distributed throughout the genomes; however, cdtC alleles recapitulated the crow-only and generalist clades. A specific cdtC allele was associated with abortion in livestock and was concomitant with tetO These findings indicate that crows harboring a generalist C. jejuni genotype may act as a vector for the zoonotic transmission of Campylobacter IMPORTANCE: This study examined the link between public health and the genomic variation of Campylobacter in relation to disease in humans, primates, and livestock. Use of large-scale whole-genome sequencing enabled population-level assessment to find new genes that are linked to livestock disease. With 184 Campylobacter genomes, we assessed virulence traits, antibiotic resistance susceptibility, and the potential for zoonotic transfer to observe that there is a "generalist" genotype that may move between host species.


Assuntos
Doenças das Aves/microbiologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter/genética , Doenças dos Primatas/microbiologia , Zoonoses/microbiologia , Animais , Animais Selvagens/microbiologia , Doenças das Aves/transmissão , Aves/microbiologia , Campylobacter/classificação , Campylobacter/isolamento & purificação , Campylobacter/fisiologia , Infecções por Campylobacter/transmissão , Bovinos , Genoma Bacteriano , Genômica , Genótipo , Humanos , Gado/microbiologia , Filogenia , Doenças dos Primatas/transmissão , Primatas/microbiologia , Ovinos , Zoonoses/transmissão
4.
Appl Environ Microbiol ; 82(15): 4811-20, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27260356

RESUMO

UNLABELLED: Campylobacter jejuni is a foodborne pathogen that often leads to human infections through the consumption of contaminated poultry. Wild birds may play a role in the transmission of C. jejuni by acting as reservoir hosts. Despite ample evidence that wild birds harbor C. jejuni, few studies have addressed the role of host ecology in transmission to domestic animals or humans. We tested the hypothesis that host social behavior and habitat play a major role in driving transmission risk. C. jejuni infection and host ecology were studied simultaneously in wild American crows (Corvus brachyrhynchos) in Davis, CA, over 3 years. We found that 178 of 337 samples tested were culture positive (53%), with infection varying by season and host age. Among adult crows, infection rates were highest during the winter, when migrants return and crows form large communal roosts. Nestlings had the highest risk of infection, and whole-genome sequencing supports the observation of direct transmission between nestlings. We deployed global positioning system (GPS) receivers to quantify habitat use by crows; space use was nonrandom, with crows preferentially occupying some habitats while avoiding others. This behavior drastically amplified the risk of environmental contamination from feces in specific locations. This study demonstrates that social behavior contributes to infection within species and that habitat use leads to a heterogeneous risk of cross-species transmission. IMPORTANCE: Campylobacter jejuni is the most common cause of gastroenteritis in industrialized countries. Despite efforts to reduce the colonization of poultry flocks and eventual infection of humans, the incidence of human C. jejuni infection has remained high. Because wild birds can harbor strains of C. jejuni that eventually infect humans, there has long been speculation that wild birds might act as an important reservoir in the C. jejuni infection cycle. We simultaneously studied infection prevalence, social behavior, and movement ecology in wild American crows (Corvus brachyrhynchos). We found that social behavior contributed to patterns of infection and that movement behavior resulted in some areas having a high risk of transmission while others had a low risk. The incorporation of ecological data into studies of C. jejuni in wild birds has the potential to resolve when and how wild birds contribute to domestic animal and human C. jejuni infection, leading to better control of initial poultry contamination.


Assuntos
Animais Selvagens/microbiologia , Doenças das Aves/microbiologia , Campylobacter jejuni/isolamento & purificação , Corvos/microbiologia , Reservatórios de Doenças/microbiologia , Migração Animal , Animais , Animais Selvagens/fisiologia , Doenças das Aves/fisiopatologia , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Corvos/fisiologia , Ecossistema
6.
Environ Sci Technol ; 49(9): 5813-9, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25830471

RESUMO

We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.


Assuntos
Poluição do Ar/análise , Poluição do Ar/economia , Custos e Análise de Custo , Eletricidade , Veículos Automotores , Centrais Elétricas/economia , Geografia , Estados Unidos
7.
PLoS Genet ; 8(8): e1002861, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916025

RESUMO

The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line mutations at a pre-specified locus.


Assuntos
Endonucleases/genética , Marcação de Genes/métodos , Mutagênese Sítio-Dirigida/métodos , Software , Peixe-Zebra/genética , Animais , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Quebras de DNA de Cadeia Dupla , Embrião não Mamífero , Endonucleases/biossíntese , Loci Gênicos , Mutação em Linhagem Germinativa , Microinjeções , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Polimorfismo Genético , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Peixe-Zebra/embriologia
8.
Health Promot Pract ; 16(4): 601-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26113496

RESUMO

Despite the high prevalence of diabetes in rural Guatemala, there is little education in diabetes self-management, particularly among the indigenous population. To address this need, a culturally relevant education intervention for diabetic patients was developed and implemented in two rural communities in Guatemala. An evaluative research project was designed to investigate if the structured, community-led diabetes self-management intervention improved selected health outcomes for participants. A one-group, pretest-posttest design was used to evaluate the effectiveness of the educational intervention by comparing measures of health, knowledge, and behavior in patients pre- and postintervention. A survey instrument assessed health beliefs and practices and hemoglobin A1c (HgA1c) measured blood glucose levels at baseline and 4 months post initiation of intervention (n = 52). There was a significant decrease (1.2%) in the main outcome measure, mean HgA1c from baseline (10.1%) and follow-up (8.9%; p = .001). Other survey findings were not statistically significant. This study illustrates that a culturally specific, diabetes self-management program led by community health workers may reduce HgA1c levels in rural populations of Guatemala. However, as a random sample was not feasible for this study, this finding should be interpreted with caution. Limitations unique to the setting and patient population are discussed in this article.


Assuntos
Serviços de Saúde Comunitária/métodos , Diabetes Mellitus Tipo 2/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Promoção da Saúde/métodos , Indígenas Centro-Americanos/psicologia , Agentes Comunitários de Saúde/educação , Relações Comunidade-Instituição , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Georgia , Hemoglobinas Glicadas/análise , Guatemala , Educação em Saúde , Pessoal de Saúde , Inquéritos Epidemiológicos , Hemoglobina A/análise , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , População Rural , Faculdades de Medicina , Autocuidado
9.
Appl Environ Microbiol ; 80(5): 1639-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24375131

RESUMO

Recent studies have suggested a potential role for wild birds in zoonotic transmission of Campylobacter jejuni, the leading cause of gastroenteritis in humans worldwide. In this study, we detected Campylobacter spp. in 66.9% (85/127) of free-ranging American crows (Corvus brachyrhyncos) sampled in the Sacramento Valley of California in 2012 and 2013. Biochemical testing and sequence analysis of 16S rRNA revealed that 93% of isolates (n = 70) were C. jejuni, with cytolethal distending toxin (CDT) and flagellin A genes detected by PCR in 20% and 46% of the C. jejuni isolates (n = 59), respectively. The high prevalence of C. jejuni, coupled with the occurrence of known virulence markers CDT and flagellin A, demonstrates that crows shed Campylobacter spp. in their feces that are potentially pathogenic to humans. Crows are abundant in urban, suburban, and agricultural settings, and thus further study to determine their role in zoonotic transmission of Campylobacter will inform public health.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/isolamento & purificação , Corvos/microbiologia , Animais , Toxinas Bacterianas/genética , Técnicas de Tipagem Bacteriana , California , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Flagelina/genética , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Prevalência , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Microbiol Resour Announc ; 13(8): e0038524, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38967489

RESUMO

Turicibacter is a common mammalian gut commensal; however, very few genomes have been sequenced, and little is understood regarding its importance for host health. Here, we add a complete Turicibacter sp. genome isolated from a spore-forming community in mice.

11.
Microbiol Resour Announc ; 13(7): e0038724, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832767

RESUMO

We present the draft genome of a novel human-derived Escherichia coli strain isolated from a healthy control human microbiota that, when put into a mouse, spontaneously disseminated from the gut to the kidneys.

12.
Microbiol Resour Announc ; 13(7): e0035124, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38899922

RESUMO

Clostridia are common mammalian gut commensals with emerging roles in human health. Here, we describe 10 Clostridia genomes from a consortium of spore forming bacteria, shown to protect mice from metabolic syndrome. These genomes will provide valuable insight on the beneficial role of spore forming bacteria in the gut.

13.
Nat Commun ; 15(1): 2769, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553486

RESUMO

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present. We then tested the hypothesis that individuals with ASD harbor a microbiota that might differentially influence GI health by performing microbiota transplantation studies into male germfree animals, followed by induction of colitis. Animals that harbor a microbiota from ASD individuals have worsened gut phenotypes when compared to animals colonized with microbiotas from familial neurotypical (NT) controls. We identify the enrichment of Blautia species in all familial NT controls and observe an association between elevated abundance of Bacteroides uniformis and reductions in intestinal injury. Oral treatment with either of these microbes reduces colon injury in mice. Finally, provision of a Blautia isolate from a NT control ameliorates gut injury-associated active social engagement in mice. Collectively, our data demonstrate that past intestinal distress is associated with changes in active social behavior in mice that can be ameliorated by supplementation of members of the human microbiota.


Assuntos
Transtorno do Espectro Autista , Colite , Gastroenteropatias , Microbiota , Humanos , Masculino , Camundongos , Animais , Transtorno do Espectro Autista/terapia , Participação Social , Colite/terapia , Suplementos Nutricionais
14.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214220

RESUMO

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Assuntos
Antígenos CD11 , Colite , Exossomos , Inflamação , Células Mieloides , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Colite/genética , Colite/imunologia , Exossomos/genética , Exossomos/imunologia , Inflamação/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/imunologia , Lipídeos , Mamíferos/genética , Mamíferos/imunologia , Camundongos , MicroRNAs/imunologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator 6 Associado a Receptor de TNF/imunologia
15.
Cell Host Microbe ; 29(3): 334-346, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705705

RESUMO

Immunoglobulin A (IgA) is the most abundant antibody at mucosal surfaces and has been the subject of many investigations involving microbiota research in the last decade. Although the classic functions of IgA include neutralization of harmful toxins, more recent investigations have highlighted an important role for IgA in regulating the composition and function of the commensal microbiota. Multiple reviews have comprehensively covered the literature that describes recent, novel mechanisms of action of IgA and development of the IgA response within the intestine. Here we focus on how the interaction between IgA and the microbiota promotes homeostasis with the host to prevent disease.


Assuntos
Microbioma Gastrointestinal/imunologia , Homeostase , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Bactérias/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Imunoglobulina A/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Intestinos/microbiologia , Doenças Metabólicas/microbiologia , Interações Microbianas/imunologia , Interações Microbianas/fisiologia , Especificidade da Espécie , Simbiose
16.
Cell Rep ; 37(5): 109916, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731608

RESUMO

Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.


Assuntos
Imunidade Adaptativa , Bactérias/imunologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/imunologia , Íleo/microbiologia , Imunidade nas Mucosas , Sistema Fagocitário Mononuclear/imunologia , Células Mieloides/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Linhagem Celular , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Íleo/imunologia , Íleo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/microbiologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
17.
Genetics ; 180(2): 857-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18780725

RESUMO

Gut granules are specialized lysosome-related organelles that act as sites of fat storage in Caenorhabditis elegans intestinal cells. We identified mutations in a gene, glo-3, that functions in the formation of embryonic gut granules. Some glo-3(-) alleles displayed a complete loss of embryonic gut granules, while other glo-3(-) alleles had reduced numbers of gut granules. A subset of glo-3 alleles led to mislocalization of gut granule contents into the intestinal lumen, consistent with a defect in intracellular trafficking. glo-3(-) embryos lacking gut granules developed into adults containing gut granules, indicating that glo-3(+) function may be differentially required during development. We find that glo-3(+) acts in parallel with or downstream of the AP-3 complex and the PGP-2 ABC transporter in gut granule biogenesis. glo-3 encodes a predicted membrane-associated protein that lacks obvious sequence homologs outside of nematodes. glo-3 expression initiates in embryonic intestinal precursors and persists almost exclusively in intestinal cells through adulthood. GLO-3GFP localizes to the gut granule membrane, suggesting it could play a direct role in the trafficking events at the gut granule. smg-1(-) suppression of glo-3(-) nonsense alleles indicates that the C-terminal half of GLO-3, predicted to be present in the cytoplasm, is not necessary for gut granule formation. Our studies identify GLO-3 as a novel player in the formation of lysosome-related organelles.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Genes de Helmintos , Lisossomos/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Grânulos Citoplasmáticos/metabolismo , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Dados de Sequência Molecular , Fenótipo
18.
Gut Microbes ; 9(5): 458-464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543554

RESUMO

The commensal microbiota influences many aspects of immune system regulation, including T cells, but molecular details of how this occurs are largely unknown. Here we review our findings that the microbiota regulates Erdr1, a secreted apoptotic factor, to control T cell survival. Erdr1 is highly upregulated in CD4+ T cells from germfree mice and antibiotic treated animals, and our study shows that Erdr1 is suppressed by the microbiota via Toll-like receptor signaling and MyD88 dependent pathways. Erdr1 functions in an autocrine fashion and promotes apoptosis through the FAS/FASL pathway. Suppression of Erdr1 leads to survival of autoreactive T cells and exacerbated autoimmune disease in the EAE model, and overexpression of Erdr1 results in lessened disease. This novel T cell apoptotic factor has implications for autoimmunity, cancer biology, and invasive pathogens and thus represents a novel therapeutic target in disease.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal , Proteínas de Membrana/imunologia , Linfócitos T/citologia , Proteínas Supressoras de Tumor/imunologia , Animais , Sobrevivência Celular , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/microbiologia , Humanos , Proteínas de Membrana/genética , Camundongos , Simbiose , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/genética
19.
J Vet Diagn Invest ; 30(3): 354-361, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29528812

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared to conventional biochemical testing methods and nucleic acid analyses (16S rDNA sequencing, hippurate hydrolysis gene testing, whole genome sequencing [WGS]) for species identification of Campylobacter isolates obtained from chickens ( Gallus gallus domesticus, n = 8), American crows ( Corvus brachyrhynchos, n = 17), a mallard duck ( Anas platyrhynchos, n = 1), and a western scrub-jay ( Aphelocoma californica, n = 1). The test results for all 27 isolates were in 100% agreement between MALDI-TOF MS, the combined results of 16S rDNA sequencing, and the hippurate hydrolysis gene PCR ( p = 0.0027, kappa = 1). Likewise, the identifications derived from WGS from a subset of 14 isolates were in 100% agreement with the MALDI-TOF MS identification. In contrast, biochemical testing misclassified 5 isolates of C. jejuni as C. coli, and 16S rDNA sequencing alone was not able to differentiate between C. coli and C. jejuni for 11 sequences ( p = 0.1573, kappa = 0.0857) when compared to MALDI-TOF MS and WGS. No agreement was observed between MALDI-TOF MS dendrograms and the phylogenetic relationships revealed by rDNA sequencing or WGS. Our results confirm that MALDI-TOF MS is a fast and reliable method for identifying Campylobacter isolates to the species level from wild birds and chickens, but not for elucidating phylogenetic relationships among Campylobacter isolates.


Assuntos
Doenças das Aves/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter/genética , RNA Ribossômico 16S/análise , Animais , Animais Selvagens , Aves , Campylobacter/isolamento & purificação , Infecções por Campylobacter/microbiologia , Galinhas , Filogenia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/microbiologia , Análise de Sequência de DNA/veterinária , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária
20.
Genome Announc ; 5(19)2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28495784

RESUMO

Sialidases, which are widely distributed in nature, cleave the α-ketosidic bond of terminal sialic acid residue. These emerging virulence factors degrade the host glycan. We report here the release of seven sialidase and one sialic acid transporter deletion in Salmonella enterica serovar Typhimurium strain LT2, which are important in cellular invasion during infection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa