Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2429-2436, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363878

RESUMO

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.


Assuntos
Metais Pesados , Nanoestruturas , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Temperatura , Nanotecnologia
2.
Biochim Biophys Acta ; 1818(12): 3010-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22842001

RESUMO

The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by ³¹P and ¹H magic-angle spinning (MAS) NMR spectroscopy. The ³¹P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.


Assuntos
Anestésicos Locais/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Membrana Celular/ultraestrutura , Dibucaína/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lidocaína/metabolismo , Espectroscopia de Ressonância Magnética , Procaína/metabolismo , Tetracaína/metabolismo
3.
Nanoscale ; 13(41): 17556-17565, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34657945

RESUMO

Within the field of DNA nanotechnology, numerous methods were developed to produce complex two- and three-dimensional DNA nanostructures for many different emerging applications. These structures typically suffer from a low tolerance against non-optimal environmental conditions including elevated temperatures. Here, we apply a chemical ligation method to covalently seal the nicks between adjacent 5' phosphorylated and 3' amine-modified strands within the DNA nanostructures. Using a cost-effective enzymatic strand modification procedure, we are able to batch-modify all DNA strands even of large DNA objects, such as origami nanostructures. The covalent strand linkage increases the temperature stability of the structures by ∼10 K. Generally, our method also allows a 'surgical' introduction of covalent strand linkages at preselected positions. It can also be used to map the strand ligation into chains throughout the whole nanostructure and identify assembly defects. We expect that our method can be applied to a large variety of DNA nanostructures, in particular when full control over the introduced covalent linkages and the absence of side adducts and DNA damages are required.


Assuntos
Nanoestruturas , DNA , Nanotecnologia , Conformação de Ácido Nucleico , Temperatura
4.
Sci Adv ; 3(1): e1601386, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28097217

RESUMO

Starch is a major carbon and energy source throughout all kingdoms of life. It consists of two carbohydrate polymers, branched amylopectin and linear amylose, which are sparingly soluble in water. Hence, the enzymatic breakdown by glycoside hydrolases (GHs) is of great biological and societal importance. Amylomaltases (AMs) are GHs specialized in the hydrolysis of α-1,4-linked sugar chains such as amylose. They are able to catalyze an intramolecular transglycosylation of a bound sugar chain yielding polymeric sugar rings, the cycloamyloses (CAs), consisting of 20 to 100 glucose units. Despite a wealth of data on short oligosaccharide binding to GHs, no structural evidence is available for their interaction with polymeric substrates that better represent the natural polysaccharide. We have determined the crystal structure of Thermus aquaticus AM in complex with a 34-meric CA-one of the largest carbohydrates resolved by x-ray crystallography and a mimic of the natural polymeric amylose substrate. In total, 15 glucose residues interact with the protein in an extended crevice with a length of more than 40 Å. A modified succinimide, derived from aspartate, mediates protein-sugar interactions, suggesting a biological role for this nonstandard amino acid. The structure, together with functional assays, provides unique insights into the interaction of GHs with their polymeric substrate and reveals a molecular ruler mechanism for minimal ring-size determination of CA products.


Assuntos
Amilose/química , Proteínas de Bactérias/química , Sistema da Enzima Desramificadora do Glicogênio/química , Thermus/enzimologia , Biocatálise , Cristalografia por Raios X , Glicosilação , Domínios Proteicos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa