Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7991): 415-424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092908

RESUMO

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Assuntos
Evolução Biológica , Neurônios , Retina , Vertebrados , Visão Ocular , Animais , Humanos , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/classificação , Análise da Expressão Gênica de Célula Única , Vertebrados/fisiologia , Visão Ocular/fisiologia , Especificidade da Espécie , Células Amácrinas/classificação , Células Fotorreceptoras/classificação , Células Ependimogliais/classificação , Células Bipolares da Retina/classificação , Percepção Visual
2.
J Neurophysiol ; 115(6): 2852-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26912600

RESUMO

Sensory-driven behaviors engage a cascade of cortical regions to process sensory input and generate motor output. To investigate the temporal dynamics of neural activity at this global scale, we have improved and integrated tools to perform functional imaging across large areas of cortex using a transgenic mouse expressing the genetically encoded calcium sensor GCaMP6s, together with a head-fixed visual discrimination behavior. This technique allows imaging of activity across the dorsal surface of cortex, with spatial resolution adequate to detect differential activity in local regions at least as small as 100 µm. Imaging during an orientation discrimination task reveals a progression of activity in different cortical regions associated with different phases of the task. After cortex-wide patterns of activity are determined, we demonstrate the ability to select a region that displayed conspicuous responses for two-photon microscopy and find that activity in populations of individual neurons in that region correlates with locomotion in trained mice. We expect that this paradigm will be a useful probe of information flow and network processing in brain-wide circuits involved in many sensory and cognitive processes.


Assuntos
Córtex Cerebral/fisiologia , Discriminação Psicológica/fisiologia , Neuroimagem Funcional , Locomoção/fisiologia , Percepção Visual/fisiologia , Animais , Mapeamento Encefálico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Microscopia , Testes Neuropsicológicos
3.
Elife ; 122023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790170

RESUMO

The rodent visual system has attracted great interest in recent years due to its experimental tractability, but the fundamental mechanisms used by the mouse to represent the visual world remain unclear. In the primate, researchers have argued from both behavioral and neural evidence that a key step in visual representation is 'figure-ground segmentation', the delineation of figures as distinct from backgrounds. To determine if mice also show behavioral and neural signatures of figure-ground segmentation, we trained mice on a figure-ground segmentation task where figures were defined by gratings and naturalistic textures moving counterphase to the background. Unlike primates, mice were severely limited in their ability to segment figure from ground using the opponent motion cue, with segmentation behavior strongly dependent on the specific carrier pattern. Remarkably, when mice were forced to localize naturalistic patterns defined by opponent motion, they adopted a strategy of brute force memorization of texture patterns. In contrast, primates, including humans, macaques, and mouse lemurs, could readily segment figures independent of carrier pattern using the opponent motion cue. Consistent with mouse behavior, neural responses to the same stimuli recorded in mouse visual areas V1, RL, and LM also did not support texture-invariant segmentation of figures using opponent motion. Modeling revealed that the texture dependence of both the mouse's behavior and neural responses could be explained by a feedforward neural network lacking explicit segmentation capabilities. These findings reveal a fundamental limitation in the ability of mice to segment visual objects compared to primates.


Assuntos
Córtex Visual , Animais , Humanos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Primatas , Macaca , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa
4.
Neuron ; 87(1): 7-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26139365

RESUMO

In this issue of Neuron, McGinley et al. (2015) investigate a classic observation from psychology linking arousal state with behavioral performance, demonstrating neural correlates of an "optimal" state for an auditory detection task.


Assuntos
Nível de Alerta/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Detecção de Sinal Psicológico/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa