Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 22(4): 820-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21693785

RESUMO

GABAergic interneurons modulate cortical activity through the actions of distinct subgroups. Recent studies using interneuron transplants have shown tremendous promise as cell-based therapies for seizure disorders, Parkinson's disease, and in the study of neocortical plasticity. Previous reports identified a spatial bias for the origins of parvalbumin (PV)- and somatostatin (SST)-expressing interneuron subgroups within the medial ganglionic eminence (MGE). In the current study, the mitotic origins of these interneurons are examined by harvesting MGE cells at 2 time points and evaluating their neurochemical profiles after transplantation into neonatal mouse cortex. Although the dorsal MGE (dMGE)-SST and ventral MGE (vMGE)-PV bias were confirmed, both subgroups originate from progenitors located throughout the MGE. The dMGE bias was also found for SST subgroups that coexpress calretinin or reelin. In contrast, another major subgroup of SST interneuron, neuropeptide Y-expressing, does not appear to originate within the MGE. Finally, novel evidence is provided that a clinically important subtype of PV-expressing interneuron, the chandelier (axo-axonic) cell, is greatly enriched in transplants from the vMGE at embryonic day 15. These findings have important implications both for the study of interneuron fate determination and for studies that use interneuron precursor transplantation to alter cortical activity.


Assuntos
Interneurônios , Neocórtex , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Telencéfalo/citologia , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/metabolismo , Contagem de Células , Diferenciação Celular , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interneurônios/classificação , Interneurônios/metabolismo , Interneurônios/transplante , Masculino , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/metabolismo , Neocórtex/transplante , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Proteína Reelina , Telencéfalo/embriologia , Fatores de Tempo
2.
Dev Biol ; 314(1): 127-36, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18155689

RESUMO

Although it is well established that the ventral telencephalon is the primary source of GABAergic cortical interneurons in rodents, little is known about the specification of specific interneuron subtypes. It is also unclear whether the potential to achieve a given fate is established at their place of origin or by signals received during their migration to or during their maturation within the cerebral cortex. Using both in vivo and in vitro transplantation techniques, we find that two major interneuron subgroups have largely distinct origins within the MGE. Somatostatin (SST)-expressing interneurons are primarily generated within the dorsal MGE, while parvalbumin (PV)-expressing interneurons primarily originate from the ventral MGE. In addition, we show that significant heterogeneity exists between gene expression patterns in the dorsal and ventral MGE. These results suggest that, like the spinal cord, neuronal fate determination in the ventral telencephalon is largely the result of spatially segregated, molecularly distinct microdomains arranged on the dorsal-ventral axis.


Assuntos
Interneurônios/citologia , Eminência Mediana/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Interneurônios/metabolismo , Eminência Mediana/embriologia , Eminência Mediana/metabolismo , Camundongos , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Int J Parasitol ; 36(4): 443-52, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16516216

RESUMO

Fusion of yellow fluorescent protein (YFP) to the N-terminus of the Escherichia coli Tn10 tet repressor (TetR) created a functional YFP-TetR repressor with the capacity of 88-fold repression of transcription when expressed in Toxoplasma gondii. As a test promoter we used the T. gondii ribosomal protein RPS13 promoter for which we provide experimental evidence of having a single major transcriptional start site, a condition favourable to the design of inducible expression systems. Integration of four tet operator (tetO) elements, 23-43 bp upstream of the RPS13 transcriptional start site, resulted in maximal repression of transcription (88-fold). Moreover, integration of these four tetO elements reduced the promoter activity only 20% in comparison with the wildtype promoter. Regulation was six-fold higher compared with an inducible expression system employing wildtype TetR. Importantly, only 0.1 microg/ml tetracycline was required for maximal induction demonstrating a higher affinity of tetracycline for YFP-TetR than for wildtype TetR which required 1 microg/ml tetracycline for maximal induction. The use of 0.1 microg/ml tetracycline allows prolonged continuous culturing of T. gondii for which levels of 1 microg/ml tetracycline are toxic. Our results show that YFP-TetR is superior to TetR for transcriptional regulation in T. gondii and we expect that its improved characteristics will be exploitable in other parasites or higher eukaryotes.


Assuntos
Proteínas Repressoras/genética , Toxoplasma/genética , Transcrição Gênica , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Western Blotting , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Luminescentes/genética , Microscopia Confocal , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Tetraciclinas/farmacologia , Toxoplasma/metabolismo , Transfecção
4.
J Mol Neurosci ; 48(3): 654-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22581449

RESUMO

Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Fatores de Crescimento Neural/fisiologia , Vias Neurais/fisiologia , Sistema Nervoso Simpático/fisiologia , Tecido Adiposo/inervação , Tecido Adiposo/fisiologia , Animais , Fibras Autônomas Pós-Ganglionares/fisiologia , Metabolismo Basal/fisiologia , Tronco Encefálico/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica , Glucocorticoides/fisiologia , Humanos , Hipotálamo/fisiologia , Fatores de Crescimento Neural/farmacologia , Neuropeptídeos/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/fisiologia
5.
Dev Neurobiol ; 71(1): 10-7, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21154906

RESUMO

GABAergic interneurons influence the development and function of the cerebral cortex through the actions of a variety of subtypes. Despite the relevance to cortical function and dysfunction, including seizure disorders and neuropsychiatric illnesses, the molecular determinants of interneuron fate remain largely unidentified. Challenges to this endeavor include the difficulty of studying fate determination of cells that even in rodents do not fully mature until weeks after their embryonic birth. However, in recent years a strong literature has grown on the temporal and spatial origins of distinct interneuron groups and types. Here we seek to highlight these findings, particularly in mice. Our goal is to lay the groundwork for future studies that use mouse genetics to study cortical interneuron fate determination and function.


Assuntos
Linhagem da Célula/fisiologia , Interneurônios/citologia , Neocórtex/citologia , Neocórtex/embriologia , Neurogênese/fisiologia , Animais , Interneurônios/fisiologia , Camundongos , Neocórtex/crescimento & desenvolvimento , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento
6.
Mycol Res ; 111(Pt 8): 909-18, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17703933

RESUMO

The complete oat gene and cDNA from the commercial mushroom, Agaricus bisporus, encoding ornithine aminotransferase (OAT) was characterized. The gene encodes a 466 amino acid protein and provides the first fully reported homobasidiomycete OAT protein sequence. The gene is interrupted by ten introns, and no mitochondrial targeting motif was present pointing to a cytoplasmic localization. The function of the gene was demonstrated by complementation of a Saccharomyces cerevisiae mutant unable to utilize ornithine as a sole source of nitrogen with an A. bisporus oat cDNA construct. Northern analysis of the oat gene together with the pruA gene (encoding Delta(1)-pyrroline-5-carboxylate dehydrogenase) showed that transcripts of both genes were lower during the first stages of fruiting body development. The higher expression of the oat gene in later stages of development, suggests the importance of ornithine metabolism for the redistribution of metabolites in the developing mushroom. Hplc analysis of all amino acids revealed that ornithine levels increased during fruiting body development whereas proline levels fell.


Assuntos
Agaricus/enzimologia , Agaricus/crescimento & desenvolvimento , Carpóforos/enzimologia , Carpóforos/crescimento & desenvolvimento , Ornitina-Oxo-Ácido Transaminase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Íntrons , Dados de Sequência Molecular , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa