Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859682

RESUMO

The selective splitting of hexane isomers without the use of energy-intensive phase-change processes is essential for the low-carbon production of clean fuels and also very challenging. Here, we demonstrate a strategy to achieve a complete splitting of the high-RON dibranched isomer from the monobranched and linear isomers, by using a nonlinear 3D ligand to form pillar-layered MOFs with delicate pore architecture and chemistry. Compared with its isoreticular MOFs with the same ted pillar but different linear 3D or linear 2D in-layer ligands, the new MOF constructed in this work, Cu(bhdc)(ted)0.5 (ZUL-C5), exhibited an interesting "channel switch" effect which creates pore space with reduced window size and channel dimensionality together with unevenly distributed alkyl-rich adsorption sites, contributing to a greatly enhanced ability to discriminate between mono- and dibranched isomers. Evidenced by a series of studies including adsorption equilibrium/kinetics/breakthrough tests, guest-loaded single-crystal/powder XRD measurement, and DFT-D modeling, a thermodynamic-kinetic synergistic mechanism in the separation was proposed, resulting in a record production time for high-purity 2,2-dimethylbutane along with a high yield.

2.
Molecules ; 23(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584636

RESUMO

Plant secondary metabolites (SMs) are not only a useful array of natural products but also an important part of plant defense system against pathogenic attacks and environmental stresses. With remarkable biological activities, plant SMs are increasingly used as medicine ingredients and food additives for therapeutic, aromatic and culinary purposes. Various genetic, ontogenic, morphogenetic and environmental factors can influence the biosynthesis and accumulation of SMs. According to the literature reports, for example, SMs accumulation is strongly dependent on a variety of environmental factors such as light, temperature, soil water, soil fertility and salinity, and for most plants, a change in an individual factor may alter the content of SMs even if other factors remain constant. Here, we review with emphasis how each of single factors to affect the accumulation of plant secondary metabolites, and conduct a comparative analysis of relevant natural products in the stressed and unstressed plants. Expectantly, this documentary review will outline a general picture of environmental factors responsible for fluctuation in plant SMs, provide a practical way to obtain consistent quality and high quantity of bioactive compounds in vegetation, and present some suggestions for future research and development.


Assuntos
Produtos Biológicos/química , Plantas/química , Estresse Fisiológico , Salinidade , Metabolismo Secundário , Solo , Temperatura , Água
3.
J Agric Food Chem ; 67(21): 5978-5988, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31070025

RESUMO

Depolymerization of polymeric proanthocyanidins (PPCs) in grape seeds into oligomeric proanthocyanidins (OPCs), especially the dimers, has important academic significance and practical value. Reaction conditions including nucleophilic reagent/PPC mass ratio, HCl concentration, reaction time, and temperature were systematically optimized by central composite design to maximize the yield of the dimeric product B2 or B1. The yield of B2 reached 3.35 mg mL-1 under the conditions of (-)-epicatechin/PPC mass ratio 2.8, HCl concentration 0.06 mol, reaction time 16 min and temperature 36 °C, and that of B1 reached 3.64 mg mL-1 under the conditions of (+)-catechin/PPC mass ratio 2.8, HCl concentration 0.07 mol, reaction time 17 min, and temperature 34 °C. Overall, this study has provided theoretical guidance and a practical approach to improvethe reaction process and economic value of proanthocyanidins in grape seed proanthocyanidin extract.


Assuntos
Extrato de Sementes de Uva/química , Proantocianidinas/química , Vitis/química , Dimerização , Polimerização , Sementes/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa