RESUMO
The cycloserine concentrations in plasma and bone that were collected during operations on 28 osteoarticular tuberculosis (TB) patients treated daily with a 500-mg cycloserine-containing regimen were determined. The median concentrations in plasma and bone were 16.29 µg/mL (interquartile range [IQR], 6.47 µg/mL) and 24.33 µg/g (IQR, 14.68 µg/g), respectively. The median bone/plasma penetration ratio was 0.76 (range, 0.33 to 1.98). Cycloserine could effectively penetrate bone and acquire concentrations comparable to those in plasma, which favors its usage in osteoarticular TB treatment.
Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Osteoarticular , Antituberculosos/uso terapêutico , China , Ciclosserina/uso terapêutico , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Osteoarticular/tratamento farmacológicoRESUMO
In this study, we aimed to assess the in vitro susceptibility to GSK656 among multiple mycobacterial species and to investigate the correlation between leucyl-tRNA synthetase (LeuRS) sequence variations and in vitro susceptibility to GSK656 among mycobacterial species. A total of 187 mycobacterial isolates, comprising 105 Mycobacterium tuberculosis isolates and 82 nontuberculous mycobacteria (NTM) isolates, were randomly selected for the determination of in vitro susceptibility. For M. tuberculosis, 102 of 105 isolates had MICs of ≤0.5 mg/liter, demonstrating a MIC50 of 0.063 mg/liter and a MIC90 of 0.25 mg/liter. An epidemiological cutoff value of 0.5 mg/liter was proposed for identification of GSK656-resistant M. tuberculosis strains. For NTM, the MIC50 and MIC90 values were >8.0 mg/liter for both Mycobacterium intracellulare and Mycobacterium avium In contrast, all Mycobacterium abscessus isolates had MICs of ≤0.25 mg/liter, yielding a MIC90 of 0.063 mg/liter. LeuRS from M. abscessus showed greater sequence similarity to M. tuberculosis LeuRS than to LeuRSs from M. avium and M. intracellulare Sequence alignment revealed 28 residues differing between LeuRSs from M. avium and M. intracellulare and LeuRSs from M. tuberculosis and M. abscessus; among them, 15 residues were in the drug binding domain. Structure modeling revealed that several different residues were close to the tRNA-LeuRS interface or the entrance of the drug-tRNA binding pocket. In conclusion, our data demonstrate significant species diversity in in vitro susceptibility to GSK656 among various mycobacterial species. GSK656 has potent efficacy against M. tuberculosis and M. abscessus, whereas inherent resistance was noted for M. intracellulare and M. avium.
Assuntos
Compostos de Boro/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Leucina-tRNA Ligase/genética , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium/efeitos dos fármacos , Humanos , Leucina-tRNA Ligase/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Infecções por Mycobacterium/microbiologia , FilogeniaRESUMO
The blood concentration of isoniazid (INH) is evidently affected by polymorphisms in N-acetyltransferase 2 (NAT2), an enzyme that is primarily responsible for the trimodal (i.e., fast, intermediate, and slow) INH elimination. The pharmacokinetic (PK) variability, driven largely by NAT2 activity, creates a challenge for the deployment of a uniform INH dosage in tuberculosis (TB) patients. Although acetylator-specific INH dosing has long been suggested, well-recognized dosages according to acetylator status remain elusive. In this study, 175 blood samples were collected from 89 pulmonary TB patients within 0.5 to 6 h after morning INH administration. According to their NAT2 genotypes, 32 (36.0%), 38 (42.7%), and 19 (21.3%) were fast, intermediate, and slow acetylators, respectively. The plasma INH concentration was detected by liquid chromatography-tandem mass spectrometry. Population pharmacokinetic (PPK) analysis was conducted using NONMEM and R software. A two-compartment model with first-order absorption and elimination well described the PK parameters of isoniazid. Body weight and acetylator status significantly affected the INH clearance rate. The dosage simulation targeting three indicators, including the well-recognized efficacy-safety indicator maximum concentration in serum (Cmax; 3 to 6 µg/ml), the reported area under the concentration-time curve from 0 h to infinity (AUC0-∞; ≥10.52 µg·h/ml), and the 2-h INH serum concentrations (≥2.19 µg/ml), was associated with the strongest early bactericidal activity. The optimal dosages targeting the different indicators varied from 700 to 900 mg/day, 500 to 600 mg/day, and 300 mg/day for the rapid, intermediate, and slow acetylators, respectively. Furthermore, a PPK model for isoniazid among Chinese tuberculosis patients was established for the first time and suggested doses of approximately 800 mg/day, 500 mg/day, and 300 mg/day for fast, intermediate, and slow acetylators, respectively, after a trade-off between efficacy and the occurrence of side effects.
Assuntos
Antituberculosos/farmacocinética , Arilamina N-Acetiltransferase/genética , Isoniazida/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto , Idoso , Antituberculosos/sangue , Antituberculosos/farmacologia , Área Sob a Curva , Arilamina N-Acetiltransferase/metabolismo , Povo Asiático , Biotransformação , Peso Corporal , Cromatografia Líquida , Esquema de Medicação , Feminino , Expressão Gênica , Genótipo , Humanos , Isoniazida/sangue , Isoniazida/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Modelos Estatísticos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estudos Prospectivos , Espectrometria de Massas em Tandem , Tuberculose Pulmonar/etnologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologiaRESUMO
BACKGROUND: The integrity of cell wall structure is highly significant for the in vivo survival of mycobacteria. We hypothesized that changes in morphology may indicate changes in cell wall metabolism and identified an aceE gene mutant (aceE-mut) which presented a deficient colony morphology on 7H10 agar by screening transposon mutagenesis in Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis (M. smegmatis). This study aimed to identify the functional role of aceE gene in cell wall biosynthesis in M. smegmatis. RESULTS: We observed that the colony morphology of aceE-mut was quite different, smaller and smoother on the solid culture medium than the wild-type (WT) strain during the transposon library screening of M. smegmatis. Notably, in contrast with the WT, which aggregates and forms biofilm, the aceE-mut lost its ability of growing aggregately and biofilm formation, which are two very important features of mycobacteria. The morphological changes in the aceE-mut strain were further confirmed by electron microscopy which indicated smoother and thinner cell envelope images in contrast with the rough morphology of WT strains. Additionally, the aceE-mut was more fragile to acidic stress and exhibited a pronounced defects in entering the macrophages as compared to the WT. The analysis of mycolic acid (MA) using LC-MS indicated deficiency of alpha-MA and epoxy-MA in aceE-mut strain whereas complementation of the aceE-mut with a wild-type aceE gene restored the composition of MA. CONCLUSIONS: Over all, this study indicates that aceE gene plays a significant role in the mycolic acid synthesis and affects the colony morphology, biofilm formation of M. smegmatis and bacteria invasion of macrophage.
Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Mutação , Mycobacterium smegmatis/fisiologia , Ácidos Micólicos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Teste de Complementação Genética , Espectrometria de Massas , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Mycobacterium smegmatis/metabolismoRESUMO
Due to the natural resistance of nontuberculous mycobacteria (NTM) against multiple antibiotics, treatment of infections caused by them is often long-course and less successful. The main objective of our study was the evaluation of in vitro susceptibility of 209 isolates consisting of different NTM species against bedaquiline and delamanid. Furthermore, reference strains of 33 rapidly growing mycobacterium (RGM) species and 19 slowly growing mycobacterium (SGM) species were also tested. Bedaquiline exhibited strong in vitro activity against both reference strains and clinical isolates of different SGM species, as the majority of the strains demonstrated MICs far below 1 µg/ml. Bedaquiline (Bdq) also exhibited potent activity against the recruited RGM species. A total of 29 out of 33 reference RGM strains had MICs lower than 1 µg/ml. According to the MIC distributions, the tentative epidemiological cutoff (ECOFF) values, and the pharmacokinetic data, a uniform breakpoint of 2 µg/ml was temporarily proposed for NTM's Bdq susceptibility testing. Although delamanid (Dlm) was not active against most of the tested reference strains and clinical isolates of RGM species, it exhibited highly variable antimicrobial activities against the 19 tested SGM species. Eleven species had MICs lower than 0.25 µg/ml, and 7 species had MICs greater than 32 µg/ml. Large numbers of M. kansasii (39/45) and M. gordonae (6/10) clinical isolates had MICs of ≤0.125 µg/ml. This study demonstrated that bedaquiline had potent activity against different NTM species in vitro, and delamanid had moderate activity against certain species of SGM. The data provided important insights on the possible clinical application of Bdq and Dlm to treat NTM infections.
Assuntos
Antibacterianos/farmacologia , Diarilquinolinas/farmacologia , Nitroimidazóis/farmacologia , Micobactérias não Tuberculosas/efeitos dos fármacos , Oxazóis/farmacologia , Pequim/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificaçãoRESUMO
Delamanid exhibited greater in vitro potency than pretomanid against multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) isolates. The pretomanid minimum inhibitory concentration (MIC) values of four MDR-TB isolates were found to be resistant to delamanid ranging from 0.031 to 0.063 mg/L. A novel nonsynonymous mutation within the fbiA gene (Glu249Lys) may be contributing to high-level resistance to delamanid and pretomanid in Mycobacterium tuberculosis.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/farmacologia , Proteínas de Bactérias/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologiaRESUMO
In this study, we demonstrate that PBTZ169 exhibits significant differences in in vitro activity against multiple Mycobacterium species. The amino acid polymorphism at codon 387 of decaprenylphosphoryl-beta-d-ribose oxidase (DprE1) can be used as a surrogate marker for in vitro susceptibility to PBTZ169 in mycobacteria. In addition, the amino acid substitution at codon 154 in DprE1 may be associated with acquired resistance to PBTZ169 in the Mycobacterium fortuitum mutants.
Assuntos
Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Piperazinas/farmacologia , Tiazinas/farmacologia , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Biomarcadores/metabolismo , Farmacorresistência Bacteriana/genética , Mycobacterium/genéticaRESUMO
Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Linezolida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Substituição de Aminoácidos , China , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , RNA Ribossômico 23S/genética , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologiaRESUMO
In this study, we identified a multidrug-resistant tuberculosis (MDR-TB) outbreak in a high school in northern China. The aim of this work was to describe TB transmission, drug resistance and treatment outcomes for this patient cluster. In January 2017, pulmonary TB was identified in a 17-year-old boy in northern China. Subsequently, a total of 11 TB cases were identified during 6-month follow-up of attendees of the same school. Of five students with latent TB infection (LTBI) receiving isoniazid preventive therapy (IPT), two pulmonary TB cases (40.0%) emerged in March and April, for an active case rate not significantly different from that of the non-IPT group (4/16, 25.0%, P = 0.598). All TB patients were first treated with a standardised first-line treatment regimen administered by the local TB hospital, with 11 of 12 active TB patients exhibiting poor treatment outcomes. Further data demonstrated that all nine patient isolates collected during this outbreak were MDR-TB and shared a common genotypic profile. In conclusion, our data demonstrate that diagnostic delay for the index MDR-TB case of this outbreak played a primary role in transmission of MDR-TB infection within a school setting. Importantly, IPT failed to prevent progression of MDR-TB from LTBI to active TB.
Assuntos
Antituberculosos/uso terapêutico , Surtos de Doenças/estatística & dados numéricos , Isoniazida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adolescente , China/epidemiologia , Feminino , Humanos , Incidência , Masculino , Mycobacterium tuberculosis/fisiologia , Estudos Retrospectivos , Instituições Acadêmicas , Tuberculose Resistente a Múltiplos Medicamentos/microbiologiaRESUMO
The continuous reduction of clinically available antibiotics has made it imperative to exploit more effective antimicrobial therapies, especially for difficult-to-treat Gram-negative pathogens. Herein, it is shown that the combination of an antimicrobial nanozyme with the clinically compatible basic amino acid L-arginine affords a potent treatment for infections with Gram-negative pathogens. In particular, the antimicrobial activity of the antimicrobial nanozyme is dramatically increased by ≈1000-fold after L-arginine stimulation. Specifically, the combination therapy enhances bacterial outer and inner membrane permeability and promotes intracellular reactive oxygen species (ROS) generation. Moreover, the metabolomic and transcriptomic results reveal that combination treatment leads to the increased ROS-mediated damage by inhibiting the tricarboxylic acid cycle and oxidative phosphorylation, thereby inducing an imbalance of the antioxidant and oxidant systems. Importantly, L-arginine dramatically significantly accelerates the healing of infected wounds in mouse models of multidrug-resistant peritonitis-sepsis and skin wound infection. Overall, this work demonstrates a novel synergistic antibacterial strategy by combining the antimicrobial nanozymes with L-arginine, which substantively facilitates the nanozyme-mediated killing of pathogens by promoting ROS production.
Assuntos
Anti-Infecciosos , Arginina , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologiaRESUMO
Myanmar is a developing country with considerable humanitarian needs, rendering its pursuit of the Millennium Development Goals (MDGs) an especially high priority. Yet progress to date remains under-examined on key fronts. Particularly within the three health-related MDGs (MDGs 4, 5, and 6), the limited data reported point to patchy levels of achievement. This study was undertaken to provide an overview and assessment of Myanmar's progress toward the health-related MDGs, along with possible solutions for accelerating health-related development into 2015 and beyond. The review highlights off-track progress in the spheres of maternal and child health (MDGs 4 and 5). It also shows Myanmar's achievements toward MDG 6 targets--in the areas of HIV/AIDS, malaria, and tuberculosis. Such achievements are especially notable in that Myanmar has been receiving the lowest level of official development assistance among all of the least developed countries in Asia. However, to make similar progress in MDGs 4 and 5, Myanmar needs increased investment and commitment in health. Toward moving forward with the post-2015 development agenda, Myanmar's government also needs to take the lead in calling for attention from the World Health Organization and its global development partners to address the stagnation in health-related development progress within the country. In particular, Myanmar's government should invest greater efforts into health system strengthening to pave the road to universal health coverage.
Assuntos
Atenção à Saúde/organização & administração , Objetivos , Criança , Serviços de Saúde da Criança/organização & administração , Feminino , Promoção da Saúde , Humanos , Masculino , Serviços de Saúde Materna/organização & administração , Mianmar , Administração em Saúde Pública , Cobertura Universal do Seguro de Saúde/organização & administraçãoRESUMO
Background: The emergence and spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is a potential epidemiological threat that needs to be monitored. However, the transmission and pathogenic characteristics of hv-CRKP in China remain unclear. We investigated the epidemiological characteristics of gut colonized hv-CRKP in a hospital in Guangdong Province, China. Methods: A total of 46 gut colonized hv-CRKP isolates were collected from Sun Yat-Sen Memorial Hospital (Guangzhou, China) from August 31st to December 31st, 2021. Minimum inhibitory concentrations (MICs) were obtained for 15 antibiotics for 46 hv-CRKP isolates. BALB/C mice infection model and mucoviscosity assay was used to evaluate the virulence of the isolates. The characteristics of genome, phylogenetic relationship and the structure of the plasmid of 46 gut colonized hv-CRKP isolates were compared with pathogenic isolates from GeneBank based on whole-genome data. Results: The hv-CRKP isolation rate of all gut colonized carbapenem-resistant Klebsiella pneumoniae was 17% (46/270), and the intestinal colonization rate of hv-CRKP was irrelevant to the sex, age, department of hospitalization, and history of antibiotic use of the host. The gut colonized hv-CRKP showed pandrug resistance and hypervirulence. The gut colonized hv-CRKP and pathogenic hv-CRKP prevalent in China were mainly ST11 hv-CRKP and had two major epidemic clades. The similarities in genomic characteristics between gut colonized hv-CRKP and pathogenic hv-CRKP were consistent. The gut colonized hv-CRKP carried an incomplete structure pK2044 virulence plasmid from hypervirulent K. pneumoniae NTUH-K2044 by analyzing the virulence plasmid structure. Conclusion: Our results suggest that the gut colonized ST11 hv-CRKP may serve as a reservoir for the clinical pathogenic ST11 HV-CRKP. It is necessary to further strengthen the monitoring of gut colonized hv-CRKP and research the potential mechanism of infection caused by gut colonized hv-CRKP.
RESUMO
BACKGROUND: The number of children born to foreign-born mothers in Taiwan has significantly increased since the 1990s. These foreign-born mothers are mainly from China and Southeast Asia. Children born to foreign-born mothers, according to media reports, are subject to inferior health. This study sought to determine whether socioeconomic disparities in birth outcomes exist between native and foreign-born mothers in Taiwan. METHODS: Analysis data were obtained from the Taiwan Birth Cohort Study of 20,090 nationally representative 6-month-old babies, born in 2005. The data on the babies were divided into two groups, those of foreign-born mothers and those of Taiwanese mothers. The health outcome variables that were examined included two adverse birth outcomes: low birth weight and preterm birth. Multiple logistic regression was used to examine the association between income and foreign-born status, as well as birth outcomes among both groups. RESULTS: Children of native Taiwanese mothers had a higher prevalence of low birth weight (6.9%) than did children of China-born (4.7%) and Southeast Asia-born mothers (5.2%). The prevalence of preterm birth was also higher among children of native Taiwanese mothers (8.4%) than among children of Southeast Asia-born (7.2%) and China-born mothers (6.3%). Foreign-born status was associated with lower odds of low birth weight among families with a monthly family income < NT$30,000 (adjusted odds ratio (AOR) = 0.24, 95% confidence interval (CI) = 0.14-0.42, p < 0.001), and lower odds of preterm birth among families with a monthly family income < NT$30,000 and NT$30,000-69,999 (AOR = 0.63, CI = 0.40-0.99, p < 0.05, and AOR = 0.68, CI = 0.53-0.88, p < 0.01, respectively). Having a higher monthly family income (NT$70,000+ and NT$30,000-69,999) was associated with lower odds of low birth weight (AOR = 0.59, CI = 0.46-0.77, p < 0.001 and AOR = 0.75, CI = 0.60-0.94, p < 0.05, respectively) among Taiwanese mothers, but not among foreign-born mothers. CONCLUSION: Foreign-born mothers from China and Southeast Asia did not experience worse birth outcomes than native Taiwanese mothers did, regardless of the disadvantaged socioeconomic position of their families.
Assuntos
Emigrantes e Imigrantes/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Recém-Nascido de Baixo Peso , Grupos Populacionais/estatística & dados numéricos , Nascimento Prematuro/epidemiologia , Adulto , Sudeste Asiático/etnologia , China/etnologia , Estudos de Coortes , Feminino , Humanos , Renda/estatística & dados numéricos , Recém-Nascido , Masculino , Idade Materna , Razão de Chances , Gravidez , Prevalência , Fatores Socioeconômicos , Taiwan/epidemiologia , Adulto JovemRESUMO
Tuberculous meningitis (TBM), the most lethal and disabling form of tuberculosis (TB), may be related to gut microbiota composition, warranting further study. Here we systematically compared gut microbiota compositions and blood cytokine profiles of TBM patients, pulmonary TB patients, and healthy controls. Notably, the significant gut microbiota dysbiosis observed in TBM patients was associated with markedly high proportions of Escherichia-Shigella species as well as increased blood levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Next, we obtained a fecal bacterial isolate from a TBM patient and administered it via oral gavage to mice in order to develop a murine gut microbiota dysbiosis model for use in exploring mechanisms underlying the observed relationship between gut microbial dysbiosis and TBM. Thereafter, cells of commensal Escherichia coli (E. coli) were isolated and administered to model mice by gavage and then mice were inoculated with Mycobacterium tuberculosis (M. tuberculosis). Subsequently, these mice exhibited increased blood TNF-α levels accompanied by downregulated expression of tight junction protein claudin-5, increased brain tissue bacterial burden, and elevated central nervous system inflammation relative to corresponding indicators in controls administered PBS by gavage. Thus, our results demonstrated that a signature dysbiotic gut microbiome profile containing a high proportion of E. coli was potentially associated with an increased circulating TNF-α level in TBM patients. Collectively, these results suggest that modulation of dysbiotic gut microbiota holds promise as a new strategy for preventing or alleviating TBM. IMPORTANCE As the most severe form of tuberculosis, the pathogenesis of tuberculous meningitis (TBM) is still unclear. Gut microbiota dysbiosis plays an important role in a variety of central nervous system diseases. However, the relationship between gut microbiota and TBM has not been identified. In our study, significant dysbiosis in gut microbiota composition with a high proportion of E. coli and increased levels of TNF-α in plasma was noted in TBM patients. A commensal E. coli was isolated and shown to increase the plasma level of TNF-α and downregulate brain tight junction protein claudin-5 in the murine model. Gavage administration of E. coli aggravated the bacterial burden and increased the inflammatory responses in the central nervous system after M. tuberculosis infection. Dysbiosis of gut microbiota may be a promising therapeutic target and biomarker for TBM prevention or treatment.
Assuntos
Microbioma Gastrointestinal , Mycobacterium tuberculosis , Shigella , Tuberculose Meníngea , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Microbioma Gastrointestinal/fisiologia , Escherichia coli/metabolismo , Disbiose/microbiologia , Claudina-5 , Mycobacterium tuberculosis/metabolismoRESUMO
BACKGROUND: The natural resistance of rapidly growing mycobacteria (RGM) to multiple antibiotics renders the treatment of the infections caused less successful. The objective of this study was to evaluate the in vitro susceptibilities of four oxazolidinones against different RGM species. METHODS: The microplate alamarBlue assay was performed to identify the minimum inhibitory concentrations (MICs) of four oxazolidinones - delpazolid, sutezolid, tedizolid, and linezolid - for 32 reference strains and 115 clinical strains of different RGM species. The MIC breakpoint concentration was defined as 16 µg/ml for linezolid. Next, the gene fragments associated with oxazolidinone resistance were amplified and sequenced, and mutations were defined in contrast with the sequences of the reference strains. RESULTS: Tedizolid showed the strongest inhibitory activity against the Mycobacterium abscessus isolates. Delpazolid exhibited better antimicrobial activity against the Mycobacterium fortuitum isolates when compared to linezolid, with 4-fold lower MIC values. The protein alignment and structure-based analysis showed that there might be no correlation between oxazolidinone resistance and mutations in the rplC, rplD, and 23S rRNA genes in the tested RGM. CONCLUSIONS: Tedizolid had the strongest inhibitory activity against M. abscessus in vitro, while delpazolid presented the best inhibitory activity against M. fortuitum. This provides important insights into the potential clinical application of oxazolidinones to treat RGM infections.
Assuntos
Mycobacterium abscessus , Oxazolidinonas , Antibacterianos/farmacologia , Pequim , Humanos , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , TetrazóisRESUMO
BACKGROUND: The antimicrobial activities of some new oxazolidinones against slowly growing mycobacteria (SGM) have never been well evaluated. METHODS: We evaluate the in vitro susceptibility of 20 reference strains and 157 clinical isolates, pertaining different SGM species, against four oxazolidinones, ie, delpazolid, sutezolid, tedizolid and linezolid. In addition, the association of linezolid resistance and mutations in 23srRNA, rplC, rplD were also tested. RESULTS: Sutezolid presented the strongest antimicrobial activity against the clinical isolates of M. intracellulare than the other oxazolidinones, with MIC50 at 2 µg/mL and MIC90 at 4 µg/mL. MICs of sutezolid were usually 4- to 8-fold lower than these of linezolid against M. intracellulare and M. avium. The tested isolates of M. kansasii were susceptible to all of the four oxazolidinones. According to the multiple sequence alignment, novel 23srRNA mutations (A2267C and A2266G) in M. intracellulare and rplD mutations (Thr147Ala) in M. avium were identified in this study which have plausible involvement in rendering resistance against linezolid. CONCLUSION: This study showed that sutezolid harbors the strongest inhibitory activity against M. intracellulare, M. avium and M. kansasii in vitro, which provided important insights on the potential clinical application of oxazolidinones for treating SGM infections.
RESUMO
BACKGROUND: Linezolid presents strong antimicrobial activity against multidrug-resistant (MDR) pulmonary tuberculosis (TB), but its application in osteoarticular tuberculosis treatment remains understudied. Our objective was to analyze the bone penetration efficiency of linezolid in osteoarticular TB patients. METHODS: Osteoarticular TB patients, treated with 600 mg q 24 h linezolid-containing regimens and undergoing surgery, were prospectively and consecutively enrolled. One dose linezolid was administered before surgery. Blood and bone samples were collected simultaneously during operation, and their linezolid concentrations were then detected using high-performance liquid chromatography-tandem mass spectrometry. Pus samples were subjected to mycobacterial culture and GeneXpert MTB/RIF assay. The minimum inhibition concentrations (MICs) and drug susceptibility testing were performed with the recovered isolates. RESULTS: A total of 36 eligible osteoarticular TB patients were enrolled, including five MDR/rifampicin-resistant cases. All the 12 recovered isolates had MICs ≤0.5 µg/mL for linezolid. Mean concentrations in plasma, collected 100-510 min after the preoperative dosing, were 10.43 ± 4.83 µg/mL (range 3.29-22.26 µg/mL), and median concentrations in bone were 3.93 µg/mL (range 0.61-16.34 µg/mL). The median bone/plasma penetration ratio was 0.42 (range 0.14-0.95 µg/mL). Linezolid concentration in bone had a linear correlation with the drug concentration in plasma (r = 0.7873, p < 0.0001), while plasma concentration could explain 61.98% of the variation of concentration in bone (R2 = 0.6198). Notably, stratification analysis by sampling time demonstrated that samples collected 200-510 min after dosing had very good linear relationships between their bone and plasma concentrations (r = 0.9323). CONCLUSIONS: Linezolid penetrates from blood to bone efficiently, and the penetration further stabilizes â¼3 h after dosing.
Assuntos
Antibacterianos/farmacocinética , Linezolida/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Osteoarticular/tratamento farmacológico , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Antituberculosos/administração & dosagem , Antituberculosos/sangue , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , China/epidemiologia , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Linezolida/sangue , Linezolida/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/administração & dosagem , Distribuição Tecidual , Adulto JovemRESUMO
OBJECTIVE: PA-824 (Pretomanid), a bicyclic nitroimidazole drug, exhibits significant bactericidal activity toward Mycobacterium tuberculosis (MTB) in vitro and in vivo, but not against Mycobacterium smegmatis. Through catalytic bioreduction, deazaflavin-dependent nitroreductase (Ddn) within MTB directly converts PA-824 to potent bactericidal products. This study aimed to identify key MTB Ddn residues involved in PA-824 conversion toward development of in vitro surrogate markers for detection of mycobacterial resistance to PA-824. METHODS: We evaluated in vitro activity of PA-824 toward MTB and nontuberculous mycobacterial species using antimicrobial susceptibility testing. Ddn amino acid sequence alignments and phylogenetic analysis revealed putative key enzyme active site residues. Candidate MTB Ddn residues required for PA-824 conversion activity were evaluated for loss-of-function using recombinantly cloned Ddn mutant proteins expressed in Mycobacterium smegmatis. RESULTS: PA-824 minimum inhibitory concentrations of 90% of bacterial growth (MIC90s) against MTB and Mycobacterium kansasii were 0.12 mg/L and 8 mg/L, respectively, but >32 mg/L for Mycobacterium spp. M. avium, M. intracellulare, M. abscessus and M. fortuitum. MTB Ddn and M. kansasii Ddn homologous sequences shared the greatest similarity (89.3% amino acid identity). M. smegmatis expressing Ddn proteins with Y65L, A76V or Y133F substitutions (but not V75L, Q125K or V148I) were resistant to PA-824. CONCLUSION: Our data demonstrated that PA-824 exhibited excellent and moderate levels of in vitro activity against MTB and M. kansasii, respectively. Substitutions of Ddn residues Y65, A76 or Y133 conferred mycobacterial resistance to PA-824.
RESUMO
Background: The purpose of this work was to assess the activity of para-aminosalicylic acid (PAS) in combination with isoniazid (INH) against clinical isolates of Mycobacterium tuberculosis (MTB). Materials and methods: A total of 72 MTB isolates with differential in vitro drug susceptibilities were included in this study, comprising 24 pan-susceptible, 24 MDR-TB, and 24 extensively drug-resistant (XDR) isolates. A microplate alamarBlue assay was performed to identify the minimal inhibitory concentrations (MICs) of MTB isolates. Results: The MIC50 of INH was 4 mg/L, and that of PAS was 0.063 mg/L against MTB isolates when single drug used. The combined use of INH and PAS resulted in 16-fold and 8-fold decrease in MIC50 for INH and PAS, respectively. The INH-PAS revealed synergistic activity in 94.4% of the isolates. In addition, there was no significant difference in the FIC index of the INH-PAS combination among individual isolates harboring different susceptibility pattern (P>0.05). Conclusion: The synergy between INH and PAS is demonstrated using non-multidrug-resistant (non-MDR) and MDR-TB strains, which will provide clinicians with useful hints to reuse this combination for treatment of TB patients in clinical practice.
RESUMO
BACKGROUND: Linezolid has shown strong antimicrobial activity against multidrug-resistant (MDR)/rifampin-resistant strains of Mycobacterium tuberculosis. Linezolid achieves clinical efficacy mainly through area under the concentration time curve/minimum inhibitory concentration ratio in the infected lesion site. Previous studies mainly focused on the relationship between linezolid concentrations in the blood and infected bone tissue when the blood drug concentration reached the peak 2 h after administration. However, we do not know whether linezolid can maintain the same bone/plasma ratio in infected bone tissue when the blood concentration reaches the trough level. Therefore, this study aimed to evaluate the penetrability of linezolid into bone tissue 24 h after administration in patients with MDR spinal tuberculosis (TB). METHODS: Nine MDR spinal TB patients, who received a treatment regimen including linezolid and underwent surgery, were enrolled prospectively from April 2017 to March 2019. Blood and diseased bone tissue specimens were collected simultaneously during operations 24 h after taking 600 mg of linezolid orally. Linezolid concentrations in plasma and diseased bone tissue specimens were determined by high-performance liquid chromatography-tandem mass spectrometry. RESULTS: Following a 600 mg oral administration of linezolid 24 h before surgery, median concentrations of linezolid in plasma and diseased bone tissue for the 9 patients were 1.98 mg/L (range 0.30-3.44 mg/L) and 0.60 mg/L (range 0.18-2.13 mg/L), respectively, at resection time. The median diseased bone/plasma linezolid concentration ratio was 0.48 (range 0.30-0.67). Pearson's correlation analysis showed that linezolid concentrations in the plasma were positively related to those in diseased bone tissue (r = 0.949, p < 0.001). CONCLUSIONS: After 24 h of medication, linezolid still had good penetrability into diseased bone tissue in patients with MDR spinal TB.