RESUMO
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.
Assuntos
Proteínas de Choque Térmico HSP90 , Replicação Viral , Animais , Humanos , Deltacoronavirus , Especificidade de Hospedeiro , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Suínos , Células HEK293RESUMO
The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.
Assuntos
Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Ácidos Siálicos , Ligação Viral , Animais , Camundongos , Linhagem Celular , Culex/virologia , Culex/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Mosquitos Vetores/virologia , Neuraminidase/metabolismo , Neuraminidase/genética , Ácidos Siálicos/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Internalização do VírusRESUMO
In patients with treatment-naive diffuse large B-cell lymphoma (DLBCL), the POLARIX study (A Study Comparing the Efficacy and Safety of Polatuzumab Vedotin With Rituximab-Cyclophosphamide, Doxorubicin, and Prednisone [R-CHP] Versus Rituximab-Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone [R-CHOP] in Participants With Diffuse Large B-Cell Lymphoma) reported a 6.5% improvement in the 2-year progression-free survival (PFS), with no difference in overall survival (OS) or safety using polatuzumab vedotin, rituximab, cyclophosphamide, doxorubicin, and prednisone (pola-R-CHP) compared with standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). We evaluated the cost-effectiveness of pola-R-CHP for DLBCL. We modeled a hypothetical cohort of US adults (mean age, 65 years) with treatment-naive DLBCL by developing a Markov model (lifetime horizon) to model the cost-effectiveness of pola-R-CHP and R-CHOP using a range of plausible long-term outcomes. Progression rates and OS were estimated from POLARIX. Outcome measures were reported in incremental cost-effectiveness ratios, with a willingness-to-pay (WTP) threshold of $150 000 per quality-adjusted life-year (QALY). Assuming a 5-year PFS of 69.6% with pola-R-CHP and 62.7% with R-CHOP, pola-R-CHP was cost-effective at a WTP of $150 000 (incremental cost-effectiveness ratio, $84 308/QALY). pola-R-CHP was no longer cost-effective if its 5-year PFS was 66.1% or lower. One-way sensitivity analysis revealed that pola-R-CHP is cost-effective up to a cost of $276 312 at a WTP of $150 000. pola-R-CHP was the cost-effective strategy in 56.6% of the 10 000 Monte Carlo iterations at a WTP of $150 000. If the absolute benefit in PFS is maintained over time, pola-R-CHP is cost-effective compared with R-CHOP at a WTP of $150 000/QALY. However, its cost-effectiveness is highly dependent on its long-term outcomes and costs of chimeric antigen receptor T-cell therapy. Routine usage of pola-R-CHP would add significantly to health care expenditures. Price reductions or identification of subgroups that have maximal benefit would improve cost-effectiveness.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma Difuso de Grandes Células B , Adulto , Humanos , Idoso , Rituximab/uso terapêutico , Análise Custo-Benefício , Prednisona/uso terapêutico , Vincristina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversosRESUMO
Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.
Assuntos
Infecções por Haemophilus , Haemophilus parasuis , NF-kappa B , Transdução de Sinais , Doenças dos Suínos , Animais , Camundongos , Haemophilus parasuis/imunologia , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , NF-kappa B/metabolismo , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Suínos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Pasteurellaceae/imunologia , Inflamação/prevenção & controle , Inflamação/veterinária , FemininoRESUMO
Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.
Assuntos
Toxinas Bacterianas , Interleucina-8 , Infecções por Pasteurella , Pasteurella multocida , Animais , Apoptose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Caspase 8/metabolismo , Caspase 8/genética , Linhagem Celular , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Suínos , Infecções por Pasteurella/metabolismo , Infecções por Pasteurella/veterináriaRESUMO
Porcine epidemic diarrhea (PED) is an acute, highly contagious, and infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV can affect pigs of all ages, with 50~100% mortality in neonatal piglets and substantial economic losses in the swine industry. In the present study, 347 fecal and intestinal samples were collected from seven regions in China during 2020-2022. A comprehensive molecular investigation of the spike (S) gene of PEDV strains was carried out, which included phylogenetic analysis of the obtained PEDV sequences. Epidemiological surveillance data indicate that the GIIc subgroup strains are widely distributed among pigs. A PEDV strain was successfully isolated from positive small intestine samples and identified through RT-PCR detection using specific N gene primers of PEDV, indirect immunofluorescence assay (IFA), TEM analysis, genome sequencing, and full-length S gene analysis, named PEDV/SC/2022. RDP and SimPlot analysis showed that the isolate originated from the recombination of PEDV/AH2012 and PEDV/AJ1102. In conclusion, our findings contribute to the current understanding of PEDV epidemiology and provide valuable information for the control of PED outbreaks in China.
Assuntos
Infecções por Coronavirus , Filogenia , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/classificação , Animais , Suínos , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , China/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Recombinação Genética , Fezes/virologiaRESUMO
Different levels of EspP2 expression are seen in strains of Glaesserella parasuis with high and low pathogenicity. As a potential virulence factor for G. parasuis, the pathogenic mechanism of EspP2 in infection of host cells is not clear. To begin to elucidate the effect of EspP2 on virulence, we used G. parasuis SC1401 in its wild-type form and SC1401, which was made EspP2-deficient. We demonstrated that EspP2 causes up-regulation of claudin-1 and occludin expression, thereby promoting the adhesion of G. parasuis to host cells; EspP2-deficiency resulted in significantly reduced adhesion of G. parasuis to cells. Transcriptome sequencing analysis of EspP2-treated PK15 cells revealed that the Rap1 signaling pathway is stimulated by EspP2. Blocking this pathway diminished occludin expression and adhesion. These results indicated that EspP2 regulates the adhesion of Glaesserella parasuis via Rap1 signaling pathway.
Assuntos
Haemophilus parasuis , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Haemophilus parasuis/patogenicidade , Haemophilus parasuis/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Linhagem Celular , SuínosRESUMO
Virulent Glaesserella parasuis may engender systemic infection characterized by fibrinous polyserositis and pneumonia. G. parasuis causes systemic disease through upper respiratory tract infection, but the mechanism has not been fully characterized. Tight junction (TJ) proteins maintain the integrity and impermeability of the epithelial barriers. In this work, we applied the recombinant cytolethal distending toxin (CDT) holotoxin and cdt-deficient mutants to assess whether CDT interacted with TJ proteins of airway tract cells. Our results indicated that CDT induced the TJ occludin (OCLN) expression in newborn pig tracheal epithelial cells within the first 3 hours of bacterial infection, followed by a significant decrease. Overexpression of OCLN in target cells made them more susceptible to G. parasuis adhesion, whereas ablation of OCLN expression by CRISPR/Cas 9 gene editing technology in target cells decreased their susceptibility to bacterial adhesion. In addition, CDT treatment could upregulate the OCLN levels in the lung tissue of C57/BL6 mice. In summary, highly virulent G. parasuis strain SC1401 stimulated the tight junction expression, resulting in higher bacterial adhesion to respiratory tract cells, and this process is closely related to CDT. Our results may provide novel insights into G. parasuis infection and CDT-mediated pathogenesis.
Assuntos
Aderência Bacteriana , Infecções por Haemophilus , Haemophilus parasuis , Pulmão , Ocludina , Animais , Camundongos , Células Epiteliais/microbiologia , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Ocludina/genética , Ocludina/metabolismo , Suínos , Regulação para Cima , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Pulmão/microbiologia , Camundongos Endogâmicos C57BLRESUMO
Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.
Assuntos
Gastroenterite Suína Transmissível , Vírus da Gastroenterite Transmissível , Suínos , Animais , Vírus da Gastroenterite Transmissível/genética , Gastroenterite Suína Transmissível/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/farmacologia , Citocinas/genética , Citocinas/farmacologia , Interleucina-12/farmacologiaRESUMO
Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.
Assuntos
Anticorpos Monoclonais , Epitopos de Linfócito B , Animais , Camundongos , Suínos , Proteína Estafilocócica A , Peptídeos , Ensaio de Imunoadsorção Enzimática , Mapeamento de EpitoposRESUMO
Intangible cultural heritage (ICH) terms are unique expressions of cultural knowledge and practices that are deeply rooted in a particular region or community. Accurately translating ICH terms is crucial for sharing this knowledge and promoting cross-cultural understanding. However, the complex nature of ICH terms, including their regional and cultural specificity, means that mistranslations can easily occur during the translation process. In addition to linguistic and cultural barriers, psychological factors can also impact the accuracy of translations. Translation psychology, a new discipline that examines the psychological process of bilingual conversion and its cognitive mechanisms, can provide insights into the translation of ICH terms. This paper proposes an information processing model of translating ICH terms based on translation psychology, which examines the psychological processes of translators during the translation of Chinese ICH terms into English. Through questionnaires and translation exercises, the study compares and analyzes the psychological activity process of the translators, verifies the expression of translation psychology in the translation of ICH terms, and identifies the characteristics of students' translations. The study's subjects were non-English major sophomores with diverse academic backgrounds, randomly sampled from a representative polytechnic university in Guangdong. The findings of this study are significant for improving the quality of translations and promoting cross-cultural understanding of ICH terms. By understanding the psychological factors involved in the translation of ICH terms, we can overcome language and cultural barriers and accurately convey the rich cultural heritage embodied in these terms.
Assuntos
Idioma , Linguística , Humanos , Inquéritos e Questionários , Traduções , TraduçãoRESUMO
Cladosporium cladosporioides is a dematiaceous hyphomycete that is pathogenic in the superficial and deep tissues of both immunodeficient and immunocompetent humans and animals. Our aim was to evaluate the antifungal immune responses elicited by C. cladosporioides in immunocompetent mice. Hence, we subcutaneously injected suspensions of C. cladosporioides spores into immunocompetent mice to investigate the anti-fungal immune responses in the skin. We collected skin tissue samples for histopathological examination, immunofluorescence staining, and quantitative real-time polymerase chain reaction analysis. We observed subcutaneous abscesses in mice after subcutaneous injection of C. cladosporioides. A large number of inflammatory cells, including dendritic cells, macrophages, and neutrophils, infiltrated the focal abscess, with comparatively few infiltrating inflammatory cells in the epidermal and dermal layers of the skin. We detected the expression of CD54 in the abscesses and the skin. Gene expression of the pattern recognition receptors Dectin-1 and TLR-2 was higher in infected mice than in controls. Gene expression of the cytokines IL-6, IL-1ß, and IL-17A also increased after infection, suggesting that the Th17 signaling pathway may be involved in the anti-fungal response. Although the pathogenicity of C. cladosporioides in healthy mice was weak after subcutaneous infection, resulting in few serious pathological phenomena, it appears that innate and Th17 immune responses play important roles in the cutaneous host response to C. cladosporioides. These findings lay a foundation for further study of the pathogenic mechanism and treatment of C. cladosporioides infection.
Assuntos
Imunidade Adaptativa , Cladosporium , Animais , Camundongos , Pele , Células Th17RESUMO
BACKGROUND: The aim of this work was to screen and validate biomarkers of ovarian cancer-initiating cells to detect the mechanisms of recurrence of epithelial ovarian cancer (EOC). METHODS: Stably labelled the amino acid in side population (SP) cells of epithelial ovarian cancer which were rich in cancer-initiating cells and non-SP cells with isotope in culture and differentially expressed cellular membrane proteins in SP cells were identified through proteomics technology. The new candidate biomarker was screened and validated through RT-PCR and western blot. Both in cell lines and primary EOC, cancer-initiating biofunctions of CDC50A positive cells were validated. Moreover, the characteristics of mesenchymal transition (EMT) was also detected and the correlation between the biomarker and clinical prognosis was observed. RESULTS: Through proteomics technology, candidate protein CDC50A was screened, and its significantly differential expression in SP cells was validated. CDC50A-positive cells from cell lines and primary ovarian cancer tissues were validated to show characteristics of cancer-initiating cells both in vitro and in vivo, including sphere-forming, self-renewal, differentiation, tumor metastasis and tumorigenicity in mice. The relationship between CDC50A-positive cells from primary tissues and tumour metastasis was confirmed based on their mesenchymal transition characteristics. Among 16 high-grade ovarian serous cancer patients, a high ratio of CDC50A-positive cells in primary tumours was correlated with a shorter platinum-free interval (p = 0.031, HR 0.260, 95% CI 0.77 ~ 0.885). CONCLUSION: CDC50A could be used to screen ovarian cancer-initiating cells and might be a new target to resolve tumour development in EOC patients.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/patologia , PrognósticoRESUMO
The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.
Assuntos
Haemophilus parasuis , Proteínas Periplásmicas de Ligação , Animais , Citocinas/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Microsporum gypseum causes dermatomycoses in giant pandas (Ailuropoda melanoleuca). This study aimed to investigate the immune response of M. gypseum following deep infection. The degree of damage to the heart, liver, spleen, lungs, and kidneys was evaluated using tissue fungal load, organ index, and histopathological methods. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) detected the mRNA expression of receptors and cytokines in the lung, and immunofluorescence staining and flow cytometry, were used to assess immune cells in the lung. The results indicated that conidia mainly colonized the lungs and caused serious injury with M. gypseum infection. Furthermore, dectin-1, TLR-2, and TLR-4 played a role in recognizing M. gypseum cells. Numerous inflammatory cells, mainly macrophages, dendritic cells, polymorphonuclear neutrophils, and inflammatory cytokines (TGF-ß, TNF-α, IL-1ß, IL-6, IL-10, IL-12, and IL-23), were activated in the early stages of infection. With the high expression of IL-22, IL-17A, and IL-17F, the Th17 pathway exerted an adaptive immune response to M. gypseum infection. These results can potentially aid in the diagnosis and treatment of diseases caused by M. gypseum in giant pandas.
Assuntos
Imunidade Adaptativa , Interleucina-17 , Microsporum , Células Th17 , Ursidae , Animais , Arthrodermataceae , Citocinas/genética , Inflamação , Interleucina-10 , Interleucina-12 , Interleucina-23 , Interleucina-6 , RNA Mensageiro/genética , Células Th17/imunologia , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Ursidae/genética , Ursidae/imunologiaRESUMO
PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.
Assuntos
Infecções por Coronavirus/veterinária , Deltacoronavirus , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Imunidade/genética , Doenças dos Suínos/etiologia , Transcriptoma , Animais , Biologia Computacional/métodos , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , NF-kappa B/metabolismo , SuínosRESUMO
Haemophilus (Glaesserella) parasuis is a commensal bacterium that causes Glässer's disease (GD) in swine. As a global transcriptional factor, CheY regulates the expression of hundreds of genes in H. parasuis. In this study, we measured changes in gene expression at the whole transcriptome level using RNAseq. We identified 2058 co-expressed genes, and found 624 differentially expressed genes (q < 0.05) in ΔcheY and SC1401. Several important GO annotations and signaling pathways were identified. RNA-seq results were assembled according to the reference genome, compared with the annotated gene model, and 12 new transcriptional regions were found. Finally, q-PCR results validated the RNA-seq results with 8 randomly selected genes. The present study indicated that CheY is mainly involved in the regulation of ABC transport, oxidative phosphorylation, and ß-Lactam resistance. We draw the regulatory network of CheY, which offers greater insight into the regulatory mechanism of CheY in H.parasuis.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Haemophilus parasuis/genética , Haemophilus parasuis/metabolismo , Transcriptoma , Animais , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Suínos/microbiologiaRESUMO
The poor prognosis of ovarian cancer is partly attributed to the frequent chemo-resistance and recurrence, which may be mediated by ovarian cancer stem cells (OCSCs). In the present study, we investigated the mechanisms contributing to the stemness of OCSCs, focusing on the long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR). Ovarian cancer cells were tested for high aldehyde dehydrogenase (ALDH) activity or high in vitro sphere-formation ability to identify OCSCs. HOTAIR was highly expressed in the OCSCs and its depletion caused a decrease in sphere-formation ability, along with reduced resistance to cisplatin and in vivo tumorigenicity. T-box transcription factor 3 (TBX3) was highly expressed in the OCSCs and was confirmed to be positively regulated by HOTAIR. Moreover, TBX3 maintained cell stemness, whereas elevating TBX3 could relieve the weakened sphere-formation ability caused by HOTAIR depletion. Subsequently, miR-206 was found to mediate the expression regulation of TBX3 by HOTAIR, and functionally involved in the regulation of stemness in OCSCs. In line with these findings, circulating HOTAIR expression was up-regulated in ovarian cancer patients. Collectively, our findings suggest that HOTAIR relieves the inhibition of TBX3 expression mediated by miR-206 in OCSCs and provide novel therapeutic targets for the treatment of ovarian cancer.
Assuntos
Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Neoplasias Ovarianas/metabolismo , Proteínas com Domínio T/efeitos dos fármacos , Proteínas com Domínio T/genéticaRESUMO
Actinobacillus pleuropneumoniae is a pathogen that infects pigs and poses a serious threat to the pig industry. The emergence of quinolone-resistant strains of A.pleuropneumoniae further limits the choice of treatment. However, the mechanisms behind quinolone resistance in A.pleuropneumoniae remain unclear. The genomes of a ciprofloxacin-resistant strain, A. pleuropneumoniae SC1810 and its isogenic drug-sensitive counterpart were sequenced and analyzed using various bioinformatics tools, revealing 559 differentially expressed genes. The biological membrane, plasmid-mediated quinolone resistance genes and quinolone resistance-determining region were detected. Upregulated expression of efflux pump genes led to ciprofloxacin resistance. The expression of two porins, OmpP2B and LamB, was significantly downregulated in the mutant. Three nonsynonymous mutations in the mutant strain disrupted the water-metal ion bridge, subsequently reducing the affinity of the quinolone-enzyme complex for metal ions and leading to cross-resistance to multiple quinolones. The mechanism of quinolone resistance in A. pleuropneumoniae may involve inhibition of expression of the outer membrane protein genes ompP2B and lamB to decrease drug influx, overexpression of AcrB in the efflux pump to enhance its drug-pumping ability, and mutation in the quinolone resistance-determining region to weaken the binding of the remaining drugs. These findings will provide new potential targets for treatment.
Assuntos
Quinolonas/farmacologia , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Biofilmes/efeitos dos fármacos , Porinas/metabolismo , Transcriptoma/genéticaRESUMO
The traditional vaccine strains, such as LaSota, do not completely prevent the shedding of NDV. An ideal vaccine which could not only prevent the clinical signs, but significantly reduce the shedding of NDV is urgently needed for the eradication of ND. In this study, an NDV isolate APMV-1/Chicken/China (SC)/PT3/2016 (hereafter referred as PT3) was identified as a class â NDV and a lentogenic strain. The antigenic relationship between PT3 and 3 other NDV strains, including vaccine strain LaSota and 2 prevalent genotype â ¦d and â ¥b strains were analyzed. The protective efficacy of PT3 and LaSota against challenge with genotype â ¦d and â ¥b strains were assessed. The antigenic analysis result showed that 4 strains belong to the single serotype and the PT3 antiserum exhibited the highest HI titer against 3 other NDV strains. The results of protective efficacy showed that both of LaSota and PT3 could provide 100% survivability for infected chickens. However, PT3 performed better in inducing higher humoral responses and reducing virus shedding than the LaSota strain. Lentogenic strains from Class I NDV appear to be promising vaccine candidates for the control of ND, and allows for the easy discrimination of field NDV and vaccine strains.