Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Neurophysiol ; 131(6): 1286-1298, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38716555

RESUMO

Transcranial direct current stimulation (tDCS) may facilitate neuroplasticity but with a limited effect when administered while patients with stroke are at rest. Muscle-computer interface (MCI) training is a promising approach for training patients with stroke even if they cannot produce overt movements. However, using tDCS to enhance MCI training has not been investigated. We combined bihemispheric tDCS with MCI training of the paretic wrist and examined the effect of this intervention in patients with chronic stroke. A crossover, double-blind, randomized trial was conducted. Twenty-six patients with chronic stroke performed MCI wrist training for three consecutive days at home while receiving either real tDCS or sham tDCS in counterbalanced order and separated by at least 8 mo. The primary outcome measure was the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) that was measured 1 wk before training, on the first training day, on the last training day, and 1 wk after training. There was neither a significant difference in the baseline FMA-UE score between groups nor between intervention periods. Patients improved 3.9 ± 0.6 points in FMA-UE score when receiving real tDCS, and 1.0 ± 0.7 points when receiving sham tDCS (P = 0.003). In addition, patients also showed continuous improvement in their motor control of the MCI tasks over the training days. Our study showed that the training paradigm could lead to functional improvement in patients with chronic stroke. We argue that appropriate MCI training in combination with bihemispheric tDCS could be a useful adjuvant for neurorehabilitation in patients with stroke.NEW & NOTEWORTHY Bihemispheric tDCS combined with a novel MCI training for motor control of wrist extensor can improve upper limb function especially a training-specific effect on the wrist movement in patients with chronic stroke. The training regimen can be personalized with adjustments made daily to accommodate the functional change throughout the intervention. This demonstrates that bihemispheric tDCS with MCI training could complement conventional poststroke neurorehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Estimulação Transcraniana por Corrente Contínua/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Pessoa de Meia-Idade , Idoso , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Método Duplo-Cego , Extremidade Superior/fisiopatologia , Doença Crônica , Estudos Cross-Over , Adulto , Recuperação de Função Fisiológica/fisiologia
2.
J Neuroeng Rehabil ; 21(1): 39, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515192

RESUMO

BACKGROUND: Effective stroke rehabilitation requires high-dose, repetitive-task training, especially during the early recovery phase. However, the usability of upper-limb rehabilitation technology in acute and subacute stroke survivors remains relatively unexplored. In this study, we introduce subacute stroke survivors to MyoGuide, a mobile training platform that employs surface electromyography (sEMG)-guided neurofeedback training that specifically targets wrist extension. Notably, the study emphasizes evaluating the platform's usability within clinical contexts. METHODS: Seven subacute post-stroke patients (1 female, mean age 53.7 years, mean time post-stroke 58.9 days, mean duration per training session 48.9 min) and three therapists (one for eligibility screening, two for conducting training) participated in the study. Participants underwent ten days of supervised one-on-one wrist extension training with MyoGuide, which encompassed calibration, stability assessment, and dynamic tasks. All training records including the Level of Difficulty (LoD) and Stability Assessment Scores were recorded within the application. Usability was assessed through the System Usability Scale (SUS) and participants' willingness to continue home-based training was gauged through a self-developed survey post-training. Therapists also documented the daily performance of participants and the extent of support required. RESULTS: The usability analysis yielded positive results, with a median SUS score of 82.5. Compared to the first session, participants significantly improved their performance at the final session as indicated by both the Stability Assessment Scores (p = 0.010, mean = 229.43, CI = [25.74-433.11]) and the LoD (p < 0.001; mean: 45.43, CI: [25.56-65.29]). The rate of progression differed based on the initial impairment levels of the patient. After training, participants expressed a keen interest in continuing home-based training. However, they also acknowledged challenges related to independently using the Myo armband and software. CONCLUSIONS: This study introduces the MyoGuide training platform and demonstrates its usability in a clinical setting for stroke rehabilitation, with the assistance of a therapist. The findings support the potential of MyoGuide for wrist extension training in patients across a wide range of impairment levels. However, certain usability challenges, such as donning/doffing the armband and navigating the application, need to be addressed to enable independent MyoGuide training requiring only minimal supervision by a therapist.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Punho , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior , Articulação do Punho
3.
Neuroimage ; 269: 119932, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36750151

RESUMO

The exact somatotopy of the human facial representation in the primary somatosensory cortex (S1) remains debated. One reason that progress has been hampered is due to the methodological challenge of how to apply automated vibrotactile stimuli to face areas in a manner that is: (1) reliable despite differences in the curvatures of face locations; and (2) MR-compatible and free of MR-interference artefacts when applied in the MR head-coil. Here we overcome this challenge by using soft pneumatic actuator (SPA) technology. SPAs are made of a soft silicon material and can be in- or deflated by means of airflow, have a small diameter, and are flexible in structure, enabling good skin contact even on curved body surfaces (as on the face). To validate our approach, we first mapped the well-characterised S1 finger layout using this novel device and confirmed that tactile stimulation of the fingers elicited characteristic somatotopic finger activations in S1. We then used the device to automatically and systematically deliver somatosensory stimulation to different face locations. We found that the forehead representation was least distant from the representation of the hand. Within the face representation, we found that the lip representation is most distant from the forehead representation, with the chin represented in between. Together, our results demonstrate that this novel MR compatible device produces robust and clear somatotopic representational patterns using vibrotactile stimulation through SPA-technology.


Assuntos
Mãos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Dedos , Tato , Pele , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico/métodos , Estimulação Física/métodos
4.
J Neurophysiol ; 130(4): 1015-1027, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671429

RESUMO

It is well established that vibrotactile stimuli are represented in somatotopic maps. However, less is known about whether these somatotopic representations are modulated by task demands and maybe even in the absence of tactile input. Here, we used a vibrotactile discrimination task as a tool to investigate these questions in further detail. Participants were required to actively perceive and process tactile stimuli in comparison to a no-task control condition where identical stimuli were passively perceived (no-memory condition). Importantly, both vibrotactile stimuli were either applied to the right index or little finger, allowing us to investigate whether cognitive task demands shape finger representations in primary somatosensory cortex (S1). Using multivoxel pattern analysis and representational similarity analysis, we found that S1 finger representations were more distinct during the memory than the no-memory condition. Interestingly, this effect was not only observed while tactile stimuli were presented but also during the delay period (i.e., in the absence of tactile stimulation). Our findings imply that when individuals are required to focus on tactile stimuli, retain them in their memory, and engage in active processing of distinctive stimulus features, this exerts a modulatory effect on the finger representations present in S1.NEW & NOTEWORTHY Using multivoxel pattern analysis, we found that discrimination task demands shape finger representations in the contralateral primary somatosensory cortex (S1), and that somatotopic representations are modulated by task demands not only during tactile stimulation but also to a certain extent in the absence of tactile input.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Dedos , Percepção do Tato/fisiologia , Mapeamento Encefálico
5.
J Neurophysiol ; 130(2): 458-473, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37465880

RESUMO

Stochastic resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). When dealing with nonlinear physical systems, it has been suggested that resonance can be induced not only by adding stochastic signals (i.e., noise) but also by adding a large class of signals that are not stochastic in nature that cause "deterministic amplitude resonance" (DAR). Here, we mathematically show that high-frequency, deterministic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. We tested this prediction empirically and investigated whether nonrandom, high-frequency, transcranial alternating current stimulation (tACS) applied to the visual cortex could induce resonance-like effects and enhance the performance of a visual detection task. We demonstrated in 28 participants that applying 80-Hz triangular-waves or sine-waves with tACS reduced the visual contrast detection threshold for optimal brain stimulation intensities. The influence of tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when deterministic electrical waveforms are applied via tACS.NEW & NOTEWORTHY Our findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide the first evidence showing acute online benefits of transcranial alternating current stimulation (tACS)triangle and tACSsine targeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The "deterministic" tACS and "stochastic" high-frequency-transcranial random noise stimulation (tRNS) are equally effective in enhancing visual contrast detection.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Humanos , Percepção Visual/fisiologia , Sensibilidades de Contraste , Ruído , Córtex Visual/fisiologia
6.
Hum Brain Mapp ; 44(10): 4183-4196, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195021

RESUMO

Humans possess an intuitive understanding of the environment's physical properties and dynamics, which allows them to predict the outcomes of physical scenarios and successfully interact with the physical world. This predictive ability is thought to rely on mental simulations and has been shown to involve frontoparietal areas. Here, we investigate whether such mental simulations may be accompanied by visual imagery of the predicted physical scene. We designed an intuitive physical inference task requiring participants to infer the parabolic trajectory of an occluded ball falling in accordance with Newtonian physics. Participants underwent fMRI while (i) performing the physical inference task alternately with a visually matched control task, and (ii) passively observing falling balls depicting the trajectories that had to be inferred during the physical inference task. We found that performing the physical inference task activates early visual areas together with a frontoparietal network when compared with the control task. Using multivariate pattern analysis, we show that these regions contain information specific to the trajectory of the occluded ball (i.e., fall direction), despite the absence of visual inputs. Using a cross-classification approach, we further show that in early visual areas, trajectory-specific activity patterns evoked by the physical inference task resemble those evoked by the passive observation of falling balls. Together, our findings suggest that participants simulated the ball trajectory when solving the task, and that the outcome of these simulations may be represented in form of the perceivable sensory consequences in early visual areas.


Assuntos
Lobo Frontal , Imageamento por Ressonância Magnética , Humanos , Simulação por Computador
7.
J Neurosci ; 41(17): 3842-3853, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33737456

RESUMO

Transcranial random noise stimulation (tRNS) over cortical areas has been shown to acutely improve performance in sensory detection tasks. One explanation for this behavioral effect is stochastic resonance (SR), a mechanism that explains how signal processing in nonlinear systems can benefit from added noise. While acute noise benefits of electrical RNS have been demonstrated at the behavioral level as well as in in vitro preparations of neural tissue, it is currently largely unknown whether similar effects can be shown at the neural population level using neurophysiological readouts of human cortex. Here, we hypothesized that acute tRNS will increase the responsiveness of primary motor cortex (M1) when probed with transcranial magnetic stimulation (TMS). Neural responsiveness was operationalized via the well-known concept of the resting motor threshold (RMT). We showed that tRNS acutely decreases RMT. This effect was small, but it was consistently replicated across four experiments including different cohorts (total N = 81, 46 females, 35 males), two tRNS electrode montages, and different control conditions. Our experiments provide critical neurophysiological evidence that tRNS can acutely generate noise benefits by enhancing the neural population response of human M1.SIGNIFICANCE STATEMENT A hallmark feature of stochastic resonance (SR) is that signal processing can benefit from added noise. This has mainly been demonstrated at the single-cell level in vitro where the neural response to weak input signals can be enhanced by simultaneously applying random noise. Our finding that transcranial random noise stimulation (tRNS) acutely increases the excitability of corticomotor circuits extends the principle of noise benefits to the neural population level in human cortex. Our finding is in line with the notion that tRNS might affect cortical processing via the SR phenomenon. It suggests that enhancing the response of cortical populations to an external stimulus might be one neurophysiological mechanism mediating performance improvements when tRNS is applied to sensory cortex during perception tasks.


Assuntos
Estimulação Acústica , Vias Eferentes/fisiologia , Ruído , Limiar Sensorial/fisiologia , Adolescente , Adulto , Algoritmos , Córtex Cerebral/fisiologia , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Sensação , Processos Estocásticos , Estimulação Magnética Transcraniana , Adulto Jovem
8.
Neuroimage ; 242: 118463, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384910

RESUMO

Neurofeedback (NF) in combination with motor imagery (MI) can be used for training individuals to volitionally modulate sensorimotor activity without producing overt movements. However, until now, NF methods were of limited utility for mentally training specific hand and finger actions. Here we employed a novel transcranial magnetic stimulation (TMS) based protocol to probe and detect MI-induced motor activity patterns in the primary motor cortex (M1) with the aim to reinforce selective facilitation of single finger representations. We showed that TMS-NF training but not MI training with uninformative feedback enabled participants to selectively upregulate corticomotor excitability of one finger, while simultaneously downregulating excitability of other finger representations within the same hand. Successful finger individuation during MI was accompanied by strong desynchronization of sensorimotor brain rhythms, particularly in the beta band, as measured by electroencephalography. Additionally, informative TMS-NF promoted more dissociable EEG activation patterns underlying single finger MI, when compared to MI of the control group where no such feedback was provided. Our findings suggest that selective TMS-NF is a new approach for acquiring the ability of finger individuation even if no overt movements are performed. This might offer new treatment modality for rehabilitation after stroke or spinal cord injury.


Assuntos
Imaginação/fisiologia , Atividade Motora/fisiologia , Neurorretroalimentação/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Interfaces Cérebro-Computador , Eletroencefalografia , Eletromiografia , Potencial Evocado Motor , Feminino , Dedos , Humanos , Individuação , Masculino , Córtex Motor/fisiologia , Movimento , Músculo Esquelético/fisiologia , Adulto Jovem
9.
Cereb Cortex ; 30(9): 4922-4937, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32313923

RESUMO

Abnormal brain development manifests itself at different spatial scales. However, whether abnormalities at the cellular level can be diagnosed from network activity measured with functional magnetic resonance imaging (fMRI) is largely unknown, yet of high clinical relevance. Here a putative mechanism reported in neurodevelopmental disorders, that is, excitation-to-inhibition ratio (E:I), was chemogenetically increased within cortical microcircuits of the mouse brain and measured via fMRI. Increased E:I caused a significant "reduction" of long-range connectivity, irrespective of whether excitatory neurons were facilitated or inhibitory Parvalbumin (PV) interneurons were suppressed. Training a classifier on fMRI signals, we were able to accurately classify cortical areas exhibiting increased E:I. This classifier was validated in an independent cohort of Fmr1y/- knockout mice, a model for autism with well-documented loss of parvalbumin neurons and chronic alterations of E:I. Our findings demonstrate a promising novel approach towards inferring microcircuit abnormalities from macroscopic fMRI measurements.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia
10.
Neuroimage ; 205: 116278, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31614221

RESUMO

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Conectoma/normas , Feminino , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes
11.
Hum Brain Mapp ; 41(18): 5187-5198, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32840936

RESUMO

Functional magnetic resonance imaging studies have documented the resting human brain to be functionally organized in multiple large-scale networks, called resting-state networks (RSNs). Other brain imaging techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), have been used for investigating the electrophysiological basis of RSNs. To date, it is largely unclear how neural oscillations measured with EEG and MEG are related to functional connectivity in the resting state. In addition, it remains to be elucidated whether and how the observed neural oscillations are related to the spatial distribution of the network nodes over the cortex. To address these questions, we examined frequency-dependent functional connectivity between the main nodes of several RSNs, spanning large part of the cortex. We estimated connectivity using band-limited power correlations from high-density EEG data collected in healthy participants. We observed that functional interactions within RSNs are characterized by a specific combination of neuronal oscillations in the alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz) bands, which highly depend on the position of the network nodes. This finding may contribute to a better understanding of the mechanisms through which neural oscillations support functional connectivity in the brain.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Rede de Modo Padrão/fisiologia , Eletroencefalografia/métodos , Ritmo Gama/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Descanso , Adulto Jovem
12.
Exp Brain Res ; 238(7-8): 1735-1744, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266444

RESUMO

Single-pulse transcranial magnetic stimulation (spTMS) studies report that movement observation facilitates corticospinal excitability in primary motor cortex (M1) in a muscle-specific manner. However, motor evoked potentials (MEPs) elicited by spTMS are known to reflect the summation of several descending volleys in corticospinal neurons which are evoked via mono- and polysynaptic inputs (so-called indirect waves or I-waves). It is unclear which of these components contribute to the muscle-specific modulation of M1 during action observation. The interactions between different I-waves are reflected in the facilitatory peaks elicited with a short-intracortical facilitation (SICF) protocol when two pulses are sent to M1 at precise intervals (i.e., 1.3, 2.5 or 4.1 ms). Here, we explored the modulation of early and late SICF peaks during action observation by measuring highly specific MEP amplitude changes measured in two muscles (index, FDI and little finger, ADM) while participants observed two different actions (precision and whole-hand grip). Our results demonstrate that both early (1.3 ms) and late (2.5 and 4.1 ms) SICF peaks are modulated in the context of movement observation. However, only the second peak (ISI 2.5 ms) was significantly associated with the muscle-specific modulation of corticospinal excitability as measured with spTMS. This late SICF peak is believed to reflect the activity cortico-cortical pathways involved in the facilitation of muscle-specific representations in M1. Thus, our findings suggest that movement observation leads to widespread activation of different neural circuits within M1, including those mediating cortico-cortical communication.


Assuntos
Potencial Evocado Motor , Córtex Motor , Eletromiografia , Força da Mão , Humanos , Músculo Esquelético , Músculos , Estimulação Magnética Transcraniana
13.
J Neuroeng Rehabil ; 17(1): 132, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028354

RESUMO

BACKGROUND: Chronic hand and wrist impairment are frequently present following stroke and severely limit independence in everyday life. The wrist orientates and stabilizes the hand before and during grasping, and is therefore of critical importance in activities of daily living (ADL). To improve rehabilitation outcomes, classical therapy could be supplemented by novel therapies that can be applied in unsupervised settings. This would enable more distributed practice and could potentially increase overall training dose. Robotic technology offers new possibilities to address this challenge, but it is critical that devices for independent training are easy and appealing to use. Here, we present the development, characterization and wearability evaluation of a fully portable exoskeleton for active wrist extension/flexion support in stroke rehabilitation. METHODS: First we defined the requirements, and based on these, constructed the exoskeleton. We then characterized the device with standardized haptic and human-robot interaction metrics. The exoskeleton is composed of two modules placed on the forearm/hand and the upper arm. These modules weigh 238 g and 224 g, respectively. The forearm module actively supports wrist extension and flexion with a torque up to 3.7 Nm and an angular velocity up to 530 deg/s over a range of 154∘. The upper arm module includes the control electronics and battery, which can power the device for about 125 min in normal use. Special emphasis was put on independent donning and doffing of the device, which was tested via a wearability evaluation in 15 healthy participants and 2 stroke survivors using both qualitative and quantitative methods. RESULTS: All participants were able to independently don and doff the device after only 4 practice trials. For healthy participants the donning and doffing process took 61 ±15 s and 24 ±6 s, respectively. The two stroke survivors donned and doffed the exoskeleton in 54 s/22 s and 113 s/32 s, respectively. Usability questionnaires revealed that despite minor difficulties, all participants were positive regarding the device. CONCLUSIONS: This study describes an actuated wrist exoskeleton which weighs less than 500 g, and which is easy and fast to don and doff with one hand. Our design has put special emphasis on the donning aspect of robotic devices which constitutes the first barrier a user will face in unsupervised settings. The proposed device is a first and intermediate step towards wearable rehabilitation technologies that can be used independently by the patient and in unsupervised settings.


Assuntos
Exoesqueleto Energizado , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Atividades Cotidianas , Idoso , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Acidente Vascular Cerebral , Articulação do Punho
14.
Neuroimage ; 200: 474-481, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31280013

RESUMO

Electrophysiological studies revealed that different neuronal oscillations, among which the alpha (8-13 Hz) rhythm in particular, but also the beta (13-30 Hz) and gamma (30-80 Hz) rhythms, are modulated during rest in the default mode network (DMN). Little is known, however, about the role of these rhythms in supporting DMN connectivity. Biophysical studies suggest that lower and higher frequencies mediate long- and short-range connectivity, respectively. Accordingly, we hypothesized that interactions between all DMN areas are supported by the alpha rhythm, and that the connectivity between specific DMN areas is established through other frequencies, mainly in the beta and/or gamma bands. To test this hypothesis, we used high-density electroencefalographic data collected in 19 healthy volunteers at rest. We analyzed frequency-dependent functional interactions between four main DMN nodes in a broad (1-80 Hz) frequency range. In line with our hypothesis, we found that the frequency-dependent connectivity profile between pairs of DMN nodes had a peak at 9-11 Hz. Also, the connectivity profile showed other peaks at higher frequencies, which depended on the specific connection. Overall, our findings suggest that frequency-dependent connectivity analysis may be a powerful tool to better understand how different neuronal oscillations support connectivity within and between brain networks.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
15.
Neuroimage ; 191: 392-402, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807820

RESUMO

Previous work has demonstrated that neuroimaging biomarkers which capture functional connectivity of the brain can be used to define a specific and robust endophenotype in Fmr1-/y mice, a well-established animal model of human Fragile-X Syndrome (FXS). However, it is currently unknown whether this macroscopic measure of brain connectivity is sufficiently sensitive to reliably detect changes caused by pharmacological interventions. Here we inhibited the activity of the metabotropic glutamate receptor-5 (mGluR5) using AFQ056/Mavoglurant, a drug that is assumed to normalize excitatory/inhibitory neural signaling imbalances in FXS. We employed resting-state-fMRI (rs-fMRI) and diffusion-weighted imaging (DWI) to test whether Mavoglurant re-established brain connectivity - at least partly - within some of the affected circuits in Fmr1-/y mice that are related to social behavior deficits. In line with previous findings, we observed that Fmr1-/y mice exhibited impaired social interaction, reduced connectivity in three main functional networks and altered network topology. At the group level, Mavoglurant did neither rescue abnormal social behavioral nor white matter abnormalities; however, for some, but not all of these circuits Mavoglurant had a genotype-specific effect of restoring functional connectivity. These results show that rs-fMRI connectivity is sufficiently sensitive to pick up system-level changes after the pharmacological inhibition of mGluR5 activity. However, our results also show that the effects of Mavoglurant are confined to specific networks suggesting that behavioral benefits might be restricted to narrow functional domains.


Assuntos
Encéfalo/efeitos dos fármacos , Indóis/farmacologia , Vias Neurais/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neuroimagem/métodos
16.
Neuroimage ; 184: 535-546, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30248455

RESUMO

With the greying population, it is increasingly necessary to establish robust and individualized markers of cognitive decline. This requires the combination of well-established neural mechanisms, and the development of increasingly sensitive methodologies. The P300 event-related potential (ERP) has been one of the most heavily investigated neural markers of attention and cognition, and studies have reliably shown that changes in the amplitude and latency of the P300 ERP index the process of aging. However, it is still not clear whether either the P3a or P3b sub-components additionally index levels of cognitive impairment. Here, we used a traditional visual three-stimulus oddball paradigm to investigate both the P3a and P3b ERP components in sixteen young and thirty-four healthy elderly individuals with varying degrees of cognitive ability. EEG data extraction was enhanced through the use of a novel signal processing method called Functional Source Separation (FSS) that increases signal-to-noise ratio by using a weighted sum of all electrodes rather than relying on a single, or a small sub-set, of EEG channels. Whilst clear differences in both the P3a and P3b ERPs were seen between young and elderly groups, only P3b amplitude differentiated older people with low memory performance relative to IQ from those with consistent memory and IQ. A machine learning analysis showed that P3b amplitude (derived from FSS analysis) could accurately categorise high and low performing elderly individuals (78% accuracy). A comparison of Bayes Factors found that differences in cognitive decline within the elderly group were 87 times more likely to be detected using FSS compared to the best performing single electrode (Cz). In conclusion, we propose that P3b amplitude could be a sensitive marker of early, age-independent, episodic memory dysfunction within a healthy older population. In addition, we advocate for the use of more advanced signal processing methods, such as FSS, for detecting subtle neural changes in clinical populations.


Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Potenciais Evocados P300/fisiologia , Adolescente , Adulto , Idoso , Eletroencefalografia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Adulto Jovem
17.
J Neurophysiol ; 121(4): 1451-1464, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30811258

RESUMO

Contextual information accompanying others' actions modulates "motor resonance", i.e., neural activity within motor areas that is elicited by movement observation. One possibility is that we weigh and combine such information in a Bayesian manner according to their relative uncertainty. Therefore, contextual information becomes particularly useful when others' actions are difficult to discriminate. It is unclear, however, whether this uncertainty modulates the neural activity in primary motor cortex (M1) during movement observation. Here, we applied single-pulse transcranial magnetic stimulation (TMS) while subjects watched different grasping actions. We operationalized motor resonance as grip-specific modulation of corticomotor excitability measured in the index (FDI) versus the little finger abductor (ADM). We experimentally modulated either the availability of kinematic information ( experiment 1) or the reliability of contextual cues ( experiment 2). Our results indicate that even in the absence of movement kinematics, reliable contextual information is enough to trigger significant muscle-specific corticomotor excitability changes in M1, which are strongest when both kinematics and contextual information are available. These findings suggest that bottom-up mechanisms that activate motor representations as a function of the observed kinematics and top-down mechanisms that activate motor representations associated with arbitrary cues converge in M1. NEW & NOTEWORTHY Our study reveals new neurophysiological insights in support of the Bayesian account of action observation by showing that "motor resonance", i.e., neural activity evoked by observing others' actions, incorporates the uncertainty related to both contextual (prior beliefs) and kinematic (sensory evidence) cues. Notably, we show that muscle-specific modulation of M1 is strongest when context and movement kinematics are available, and it can be elicited even in the absence of movement kinematics.


Assuntos
Sinais (Psicologia) , Córtex Motor/fisiologia , Movimento , Incerteza , Adulto , Fenômenos Biomecânicos , Feminino , Dedos/fisiologia , Força da Mão , Humanos , Masculino , Modelos Neurológicos , Músculo Esquelético/fisiologia , Desempenho Psicomotor
18.
J Neurol Neurosurg Psychiatry ; 90(6): 642-651, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30683707

RESUMO

Fatigue is one of the most common symptoms in multiple sclerosis (MS), with a major impact on patients' quality of life. Currently, treatment proceeds by trial and error with limited success, probably due to the presence of multiple different underlying mechanisms. Recent neuroscientific advances offer the potential to develop tools for differentiating these mechanisms in individual patients and ultimately provide a principled basis for treatment selection. However, development of these tools for differential diagnosis will require guidance by pathophysiological and cognitive theories that propose mechanisms which can be assessed in individual patients. This article provides an overview of contemporary pathophysiological theories of fatigue in MS and discusses how the mechanisms they propose may become measurable with emerging technologies and thus lay a foundation for future personalised treatments.


Assuntos
Cognição/fisiologia , Fadiga/etiologia , Esclerose Múltipla/complicações , Encéfalo/fisiopatologia , Fadiga/fisiopatologia , Humanos , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/psicologia
19.
PLoS Comput Biol ; 14(7): e1006301, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30020922

RESUMO

Perceptual decision-making relies on the gradual accumulation of noisy sensory evidence. It is often assumed that such decisions are degraded by adding noise to a stimulus, or to the neural systems involved in the decision making process itself. But it has been suggested that adding an optimal amount of noise can, under appropriate conditions, enhance the quality of subthreshold signals in nonlinear systems, a phenomenon known as stochastic resonance. Here we asked whether perceptual decisions made by human observers obey these stochastic resonance principles, by adding noise directly to the visual cortex using transcranial random noise stimulation (tRNS) while participants judged the direction of coherent motion in random-dot kinematograms presented at the fovea. We found that adding tRNS bilaterally to visual cortex enhanced decision-making when stimuli were just below perceptual threshold, but not when they were well below or above threshold. We modelled the data under a drift diffusion framework, and showed that bilateral tRNS selectively increased the drift rate parameter, which indexes the rate of evidence accumulation. Our study is the first to provide causal evidence that perceptual decision-making is susceptible to a stochastic resonance effect induced by tRNS, and to show that this effect arises from selective enhancement of the rate of evidence accumulation for sub-threshold sensory events.


Assuntos
Tomada de Decisões , Modelos Neurológicos , Ruído , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Percepção de Movimento , Processos Estocásticos , Adulto Jovem
20.
Cereb Cortex ; 28(7): 2495-2506, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901787

RESUMO

Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2-/- mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes.


Assuntos
Transtorno Autístico , Encéfalo/crescimento & desenvolvimento , Proteína do X Frágil da Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Mapeamento Encefálico , Conectoma , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Transdução Genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa