Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Plant Cell Environ ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738504

RESUMO

Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.

2.
Inorg Chem ; 63(1): 795-802, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109223

RESUMO

The conversion of diluted CO2 into tunable syngas via photocatalysis is critical for implementing CO2 reduction practically, although the efficiency remains low. Herein, we report the use of graphene-modified transition metal hydroxides, namely, NiXCo1-X-GR, for the conversion of diluted CO2 into syngas with adjustable CO/H2 ratios, utilizing Ru dyes as photosensitizers. The Ni(OH)2-GR cocatalyst can generate 12526 µmol g-1 h-1 of CO and 844 µmol g-1 h-1 of H2, while the Co(OH)2-GR sample presents a generation rate of 2953 µmol g-1 h-1 for CO and 10027 µmol g-1 h-1 for H2. Notably, by simply altering the addition amounts of nickel and cobalt in the transition metal composite, the CO/H2 ratios in syngas can be easily regulated from 18:1 to 1:4. Experimental characterization of composites and DFT calculations suggest that the differing adsorption affinities of CO2 and H2O over Ni(OH)2-GR and Co(OH)2-GR play a significant role in determining the selectivity of CO and H2 products, ultimately affecting the CO/H2 ratios in syngas. Overall, these findings demonstrate the potential of graphene-modified transition metal hydroxides as efficient photocatalysts for CO2 reduction and syngas production.

3.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257378

RESUMO

The high electrons and holes recombination rate of ZnIn2S4 significantly limits its photocatalytic performance. Herein, a simple in situ photodeposition strategy is adopted to introduce the cocatalyst cobalt phosphate (Co-Pi) on ZnIn2S4, aiming at facilitating the separation of electron-hole by promoting the transfer of photogenerated holes of ZnIn2S4. The study reveals that the composite catalyst has superior photocatalytic performance than blank ZnIn2S4. In particular, ZnIn2S4 loaded with 5% Co-Pi (ZnIn2S4/5%Co-Pi) has the best photocatalytic activity, and the H2 production rate reaches 3593 µmol·g-1·h-1, approximately double that of ZnIn2S4 alone. Subsequent characterization data demonstrate that the introduction of the cocatalyst Co-Pi facilitates the transfer of ZnIn2S4 holes, thus improving the efficiency of photogenerated carrier separation. This investigation focuses on the rational utilization of high-content and rich cocatalysts on earth to design low-cost and efficient composite catalysts to achieve sustainable photocatalytic hydrogen evolution.

4.
Reproduction ; 165(6): 593-603, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37000598

RESUMO

In brief: The appropriate growth and functions of Sertoli cells are crucial to testis development and spermatogenesis in mammals. This study reveals a novel mechanism of follicle-stimulating hormone in immature porcine Sertoli cell proliferation. Abstract: Follicle-stimulating hormone (FSH) is a major Sertoli cell mitogen that binds to the FSH receptor. Sertoli cells are indispensable for testis development and spermatogenesis. However, the regulatory mechanisms of FSH in immature Sertoli cell proliferation have not been determined, particularly in domestic animals. In the present study, we identified the regulatory mechanisms of FSH during immature porcine Sertoli cell proliferation. Transcriptome analysis revealed 114 differentially expressed genes that were induced by FSH treatment, which contains 68 upregulated and 46 downregulated genes. These differentially expressed genes were enriched in multiple pathways, including the Ras signaling pathway. Knockdown of the CC-chemokine receptor 7 (CCR7) gene, which was upregulated by FSH, inhibited cell cycle progression by arresting cells in the G1 phase and reduced the cell proliferation and ERK1/2 phosphorylation. In addition, Kobe0065 inhibited Ras signaling in a similar manner as CCR7 knockdown. Furthermore, FSH abolished the effects of Ras signaling pathway inhibition and CCR7 knockdown. Collectively, FSH promotes immature porcine Sertoli cell proliferation by activating the CCR7/Ras-ERK signaling axis. Our results provide novel insights into the regulatory mechanism of FSH in porcine testis development and spermatogenesis by deciding the fate of immature porcine Sertoli cells.


Assuntos
Células de Sertoli , Transdução de Sinais , Masculino , Animais , Suínos , Receptores CCR7/metabolismo , Células de Sertoli/metabolismo , Proliferação de Células , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Testículo/metabolismo , Mamíferos/metabolismo
5.
Angew Chem Int Ed Engl ; 61(28): e202204563, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35510561

RESUMO

We demonstrate a new case of materials-gene engineering to precisely design photocatalysts with the prescribed properties. Based on theoretical calculations, a phase-doping strategy was proposed to regulate the pathways of CO2 conversion over Au nanoparticles (NPs) loaded TiO2 photocatalysts. As a result, the thermodynamic bottleneck of CO2 -to-CO conversion is successfully unlocked by the incorporation of stable twinning crystal planes into face-centered cubic (fcc) phase Au NPs. Compared to bare pristine TiO2 , the activity results showed that the loading of regular fcc-Au NPs raised the CO production by 18-fold but suppressed the selectivity from 84 % to 75 %, whereas Au NPs with twinning (110) and (100) facets boosted the activity by nearly 40-fold and established near unity CO selectivity. This enhancement is shown to originate from a beneficial shift in the surface reactive site energetics arising at the twinned stacking fault, whereby both the CO reaction energy and desorption energy were significantly reduced.

6.
Angew Chem Int Ed Engl ; 61(24): e202203261, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35347831

RESUMO

With fascinating photophysical properties and a strong potential to utilize solar energy, metal halide perovskites (MHPs) have become a prominent feature within photocatalysis research. However, the effectiveness of single MHP photocatalysts is relatively poor. The introduction of a second component to form a heterojunction represents a well-established route to accelerate carrier migration and boost reaction rates, thus increasing the photoactivity. Recently, there have been several scientific advances related to the design of MHP-based heterojunction photocatalysts, including Schottky, type II, and Z-scheme heterojunctions. In this Review, we systematically discuss and critically appraise recent developments in MHP-based heterojunction photocatalysis. In addition, the techniques for identifying the type of active heterojunctions are evaluated and we conclude by briefly outlining the ongoing challenges and future directions for promising photocatalysts based on MHP heterojunctions.

7.
FASEB J ; 34(11): 15164-15179, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918760

RESUMO

Sertoli cells play vital roles in normal spermatogenesis, and microRNAs (miRNAs) participate in regulating Sertoli cell development. However, the functions and mechanisms of action of most identified miRNAs in porcine Sertoli cells remain largely unknown. Herein, we primarily explored the regulatory roles of miR-130a in immature porcine Sertoli cells using EdU-based high-content screening assay. The results demonstrated that 27 miRNAs have potential roles in the promotion of immature porcine Sertoli cell proliferation, and miR-130a was identified as a promising candidate. miR-130a promoted cell cycle progression and cell proliferation, whereas it impeded cell apoptosis in immature porcine Sertoli cells. It also contributed to Sertoli cell proliferation and testis development in vivo. A TMT-based proteomics approach revealed that miR-130a regulated the expression of 91 proteins and multiple pathways, including the TGF-ß and PI3K/AKT signaling. miR-130a did not directly target the 3'-UTR of SMAD5; however, it increased SMAD5 phosphorylation. Moreover, miR-130a enhanced TGF-ß signaling by activating SMAD5 protein, and TGF-ß signaling further activated the PI3K/AKT signaling pathway to promote cell proliferation and inhibit cell apoptosis in porcine immature Sertoli cells. Collectively, miR-130a promoted immature porcine Sertoli cell growth by activating SMAD5 through the TGF-ß-PI3K/AKT signaling pathway. This study, therefore, provides novel insights into the effects of miR-130a on porcine spermatogenesis through the regulation of immature Sertoli cell proliferation and apoptosis.


Assuntos
MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/citologia , Proteína Smad5/metabolismo , Espermatogênese , Fator de Crescimento Transformador beta/metabolismo , Animais , Proliferação de Células , Masculino , Camundongos Endogâmicos ICR , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células de Sertoli/metabolismo , Proteína Smad5/genética , Suínos , Fator de Crescimento Transformador beta/genética
8.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502294

RESUMO

Sertoli cells are the crucial coordinators to guarantee normal spermatogenesis and male fertility. Although circular RNAs (circRNAs) exhibit developmental-stage-specific expression in porcine testicular tissues and have been thought of as potential regulatory molecules in spermatogenesis, their functions and mechanisms of action remain largely unknown, especially in domestic animals. A novel circBTBD7 was identified from immature porcine Sertoli cells using reverse transcription PCR, Sanger sequencing, and fluorescence in situ hybridization assays. Functional assays illustrated that circBTBD7 overexpression promoted cell cycle progression and cell proliferation, as well as inhibited cell apoptosis in immature porcine Sertoli cells. Mechanistically, circBTBD7 acted as a sponge for the miR-24-3p and further facilitated its target mitogen-activated protein kinase 7 (MAPK7) gene. Overexpression of miR-24-3p impeded cell proliferation and induced cell apoptosis, which further attenuated the effects of circBTBD7 overexpression. siRNA-induced MAPK7 deficiency resulted in a similar effect to miR-24-3p overexpression, and further offset the effects of miR-24-3p inhibition. Both miR-24-3p overexpression and MAPK7 knockdown upregulated the p38 phosphorylation activity. The SB202190 induced the inhibition of p38 MAPK pathway and caused an opposite effect to that of miR-24-3p overexpression and MAPK7 knockdown. Collectively, circBTBD7 promotes immature porcine Sertoli cell growth through modulating the miR-24-3p/MAPK7 axis to inactivate the p38 MAPK signaling pathway. This study expanded our knowledge of noncoding RNAs in porcine normal spermatogenesis through deciding the fate of Sertoli cells.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , RNA Circular/genética , Células de Sertoli/citologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Masculino , Proteína Quinase 7 Ativada por Mitógeno/genética , Células de Sertoli/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
9.
Yi Chuan ; 43(7): 680-693, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284983

RESUMO

The number of Sertoli cells in the testis is a major regulator on the sperm production capacity. MicroRNAs (miRNAs) participate in regulating the proliferation and apoptosis of porcine immature Sertoli cells. However, the functions and mechanisms of action of most identified miRNAs in porcine Sertoli cells remain largely unknown. In the present study, based on our previous results from an EdU-based high-content screening assay, we further studied the mechanism of action of miR-191 on the proliferation and apoptosis of porcine immature Sertoli cells through flow cytometry, Western blotting, and dual-luciferase activity analyses. The results demonstrated that overexpression of miR-191 promoted cell cycle progression from G1 phase to the S and G2 phases, enhanced cell proliferation, and inhibited apoptosis in the porcine immature Sertoli cells, whereasmiR-191 inhibition resulted in the opposite effects. The results from a luciferase reporter assay showed that miR-191 directly targeted the 3'-UTR of theBDNF gene. BDNF knockdown also promoted cell cycle progression to the S phase, cell proliferation and inhibited cell apoptosis, which were consistent with the effects of the miR-191overexpression. A co-transfection experiment showed that BDNF knockdown abolished the effects of miR-191 inhibition. Furthermore, both miR-191 overexpression and BDNFinhibition elevated the phosphorylation of PI3K and AKT, the key components of the PI3K/AKT signaling pathway, whereas BDNFinhibition offset the effects of the miR-191 knockdown. Overall, these data indicated that miR-191 promotes cell proliferation and inhibits apoptosis in porcine immature Sertoli cells by targeting theBDNF gene through activating the PI3K/AKT signaling pathway. This study provides a novel scientific basis for further investigation on the biological functions of miR-191 on porcine spermatogenesis.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Animais , Apoptose/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Masculino , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos
10.
Reproduction ; 159(2): 145-157, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31756167

RESUMO

Sertoli cells are indispensable for normal spermatogenesis, and increasing evidence has shown that miRNAs participate in the regulation of Sertoli cell growth. However, the functions and regulatory mechanisms of miRNAs in Sertoli cells of domestic animals have not been fully investigated. In the present study, we mainly investigated the regulatory roles of miR-499 in immature porcine Sertoli cells. The results showed that miR-499 was mainly located in the basement section of seminiferous tubules of prepubertal porcine testicular tissue. Overexpression of miR-499 promoted cell proliferation and inhibited apoptosis, whereas miR-499 inhibition resulted in the opposite effect. The PTEN gene was directly targeted by miR-499, and the expression of mRNA and protein was also negatively regulated by miR-499 in immature porcine Sertoli cells. siRNA-induced PTEN knockdown resulted in a similar effect as an overexpression of miR-499 and abolished the effects of miR-499 inhibition on immature porcine Sertoli cells. Moreover, both miR-499 overexpression and the PTEN knockdown activated the PI3K/AKT signaling pathway, whereas inhibition of the PI3K/AKT signaling pathway caused immature porcine Sertoli cell apoptosis and inhibited cell proliferation. Overall, miR-499 promotes proliferation and inhibits apoptosis in immature porcine Sertoli cells through the PI3K/AKT pathway by targeting the PTEN gene. This study provides novel insights into the effects of miR-499 in spermatogenesis through the regulation of immature Sertoli cell proliferation and apoptosis.

11.
Reprod Domest Anim ; 55(5): 547-558, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31916301

RESUMO

Immature Sertoli cell proliferation determines the total number of mature Sertoli cells and further regulates normal spermatogenesis. Accumulating evidence demonstrates that microRNAs (miRNAs) play regulatory roles in immature Sertoli cell proliferation, while the functions and mechanisms of the Sertoli cells of domestic animals are poorly understood. In the present study, we aimed to investigate the roles of miR-362 in cell proliferation and apoptosis of porcine immature Sertoli cells. The results showed that miR-362 inhibition promoted the entrance of cells into the S phase and increased the expressions of cell cycle-related genes c-MYC, CNNE1, CCND1 and CDK4. Knock-down of miR-362 also promoted cell proliferation and inhibited apoptosis, which was demonstrated by the results from cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Annexin V-FITC/PI staining assays. The recQ-mediated genome instability protein 1 (RMI1) gene was identified as a potential target gene of miR-362 via luciferase reporter assay, and miR-362 repressed the protein expression of RMI1 in porcine immature Sertoli cells. siRNA-induced RMI1 knock-down further abolished the effects of miR-362 inhibition on porcine immature Sertoli cells. Collectively, we concluded that miR-362 knock-down promotes proliferation and inhibits apoptosis in porcine immature Sertoli cells by targeting the RMI1 gene, which indicates that miR-362 determines the fate of immature Sertoli cells.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proliferação de Células , MicroRNAs/genética , Células de Sertoli/citologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , Suínos
12.
Angew Chem Int Ed Engl ; 59(32): 13320-13327, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32427402

RESUMO

Vacancy engineering has been proved repeatedly as an adoptable strategy to boost electrocatalysis, while its poor selectivity restricts the usage in nitrogen reduction reaction (NRR) as overwhelming competition from hydrogen evolution reaction (HER). Revealed by density functional theory calculations, the selenium vacancy in ReSe2 crystal can enhance its electroactivity for both NRR and HER by shifting the d-band from -4.42 to -4.19 eV. To restrict the HER, we report a novel method by burying selenium vacancy-rich ReSe2 @carbonized bacterial cellulose (Vr -ReSe2 @CBC) nanofibers between two CBC layers, leading to boosted Faradaic efficiency of 42.5 % and ammonia yield of 28.3 µg h-1 cm-2 at a potential of -0.25 V on an abrupt interface. As demonstrated by the nitrogen bubble adhesive force, superhydrophilic measurements, and COMSOL Multiphysics simulations, the hydrophobic and porous CBC layers can keep the internal Vr -ReSe2 @CBC nanofibers away from water coverage, leaving more unoccupied active sites for the N2 reduction (especially for the potential determining step of proton-electron coupling and transferring processes as *NN → *NNH).

13.
Langmuir ; 35(17): 5728-5736, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30950616

RESUMO

Photostability is a critical issue for evaluating the use of photocatalysts to realize large-scale implementation of solar energy conversion. Recently emerged ultrasmall gold (Au) clusters with distinctive physicochemical properties have been regarded as visible-light photosensitizers for photoredox catalysis, whereas the poor stability under visible-light exposure greatly restricts their photocatalytic applications. Herein, we provide a proof-of-concept study on enhancing the photostability of ultrasmall Au clusters via a combined strategy of surface engineering and interfacial modification. The photostability of Au clusters on the surface of TiO2 nanosheets with less hydroxyl group can be improved to some extent as compared to that on TiO2 nanoparticles with abundant hydroxyl groups under continuous visible-light irradiation (λ > 420 nm). Moreover, the subsequent modification of branched polyethylenimine (BPEI) between TiO2 nanosheets and Au clusters further improves their photostability upon light illumination. Consequently, the as-constructed TiO2 nanosheet-BPEI-Au cluster composites exhibit stable visible-light activity toward Cr(VI) photoreduction. It is hoped that the joint strategy via surface engineering and interfacial modification provides a facile guideline for stabilizing ultrasmall Au clusters toward targeting applications in the photoredox catalysis process.

14.
Mikrochim Acta ; 186(2): 95, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631937

RESUMO

A novel MXene-based biomimetic enzyme was synthesized using adenosine triphosphate (ATP) as a template to modify a Mn3(PO4)2 nanostructure on Mxene-Ti3C2 nanosheets. The resulting composite was used as an electrode material in an electrochemical sensor for superoxide anion (O2•-). It displays excellent catalytic properties which is attributed to the synergistic effects of the two-dimensional conductive substrate and the Mn3(PO4)2 nanoparticles. The addition of ATP results in the formation of a porous and ordered nanostructure of Mn3(PO4)2. This facilitates the electron transfer between O2•- and electrode. The sensor, best operated at 0.75 V (vs. Ag/AgCl), displays a rapid amperometric response with a detection limit of 0.5 nM and an analytical range that extends from 2.5 nM to 14 µM. Conceivably, it has potential in the detection of O2•- released by living cells. Graphical abstract Nanostructured MXenes were synthesized by in-situ growth of Mn3(PO4)2 on Ti3C2 nanosheets under the induction of adenosine triphosphate (ATP). They display enzyme mimickong properties. A sensor fabricated with the composites can be used for the detection of superoxide anions released by HepG2 cells.


Assuntos
Materiais Biomiméticos/química , Eletroquímica/métodos , Nanopartículas/química , Nanoestruturas/química , Compostos Organometálicos/química , Superóxidos/metabolismo , Eletrodos , Transporte de Elétrons , Células Hep G2 , Humanos , Limite de Detecção , Modelos Moleculares , Conformação Molecular
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(6): 594-600, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31208516

RESUMO

OBJECTIVE: To study the effect of hyperoxic exposure on the dynamic expression of heme oxygenase-1 (HO-1) and glutamate-L-cysteine ligase catalytic subunit (GCLC) in the lung tissue of preterm neonatal rats. METHODS: Cesarean section was performed for rats on day 21 of gestation to obtain 80 preterm rats, which were randomly divided into air group and hyperoxia group after one day of feeding. The rats in the air group were housed in room air under atmospheric pressure, and those in the hyperoxia group were placed in an atmospheric oxygen tank (oxygen concentration 85%-95%) in the same room. Eight rats each were selected from each group on days 1, 4, 7, 10, and 14, and lung tissue samples were collected. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue at different time points after air or hyperoxic exposure. Western blot and RT-qPCR were used to measure the protein and mRNA expression of HO-1 and GCLC in the lung tissue of preterm rats at different time points after air or hyperoxic exposure. RESULTS: Compared with the air group, the hyperoxia group had a significant reduction in the body weight (P<0.05). Compared with the air group, the hyperoxia group had structural disorder, widening of alveolar septa, a reduction in the number of alveoli, and simplification of the alveoli on the pathological section of lung tissue. Compared with the air group, the hyperoxia group had significantly lower relative mRNA expression of HO-1 in the lung tissue on day 7 and significantly higher expression on days 10 and 14 (P<0.05). Compared with the air group, the hyperoxia group had significantly lower mRNA expression of GCLC in the lung tissue on days 1, 4, and 7 and significantly higher expression on day 10 (P<0.05). Compared with the air group, the hyperoxia group had significantly higher protein expression of HO-1 in the lung tissue on all days, and the protein expression of GCLC had same results as HO-1, except on day 1 (P<0.05). CONCLUSIONS: Hyperoxia exposure may lead to growth retardation and lung developmental retardation in preterm rats. Changes in the protein and mRNA expression of HO-1 and GCLC in the lung tissue of preterm rats may be associated with the pathogenesis of hyperoxia-induced lung injury in preterm rats.


Assuntos
Hiperóxia , Animais , Animais Recém-Nascidos , Domínio Catalítico , Cesárea , Cisteína , Feminino , Glutamatos , Heme Oxigenase-1 , Humanos , Recém-Nascido , Pulmão , Gravidez , Ratos , Ratos Sprague-Dawley
16.
Small ; 14(21): e1704531, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29667357

RESUMO

Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO2 nanotube arrays (TNTAs@RGO/MoS2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H2 than binary TNTAs@RGO and TNTAs/MoS2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes.

17.
Reprod Domest Anim ; 53(6): 1375-1385, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30024056

RESUMO

Accumulating reports have demonstrated that microRNAs (miRNAs) participate in regulating the complex processes of animal testis development and spermatogenesis; yet, the mechanisms by which miRNAs regulate spermatogenesis are poorly understood. miR-26a was identified as a miRNA that is differentially expressed among different pig testicular tissue developmental stages in our previous study. In this study, p21 activated kinase 2 (PAK2) gene was determined as one target gene of miR-26a by luciferase reporter assay, and miR-26a repressed the PAK2 mRNA abundance in porcine Sertoli cells. The Cell Counting Kit-8 (CCK8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay and annexin V-FITC/PI staining assay results showed that miR-26a overexpression inhibited proliferation and promoted apoptosis in porcine Sertoli cells. These phenomena were similar to the siRNA-mediated knockdown of the PAK2 gene. Taken together, our results demonstrate that miR-26a inhibits proliferation and promotes apoptosis in porcine Sertoli cells by targeting the PAK2 gene, which may be a regulator of porcine spermatogenesis.


Assuntos
Apoptose/genética , Proliferação de Células/genética , MicroRNAs/genética , Células de Sertoli/metabolismo , Quinases Ativadas por p21/genética , Animais , Linhagem Celular , Masculino , RNA Interferente Pequeno/análise , Suínos
18.
Genomics ; 109(5-6): 446-456, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28746831

RESUMO

A comprehensive and systematic understanding of the roles of lncRNAs in the postnatal development of the pig testis has still not been achieved. In the present study, we obtained more than one billion clean reads and identified 15,528 lncRNA transcripts; these transcripts included 5032 known and 10,496 novel porcine lncRNA transcripts and corresponded to 10,041 lncRNA genes. Pairwise comparisons identified 449 known and 324 novel lncRNAs that showed differential expression patterns. GO and KEGG pathway enrichment analyses revealed that the targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the TGF-beta pathway, the PI3K-Akt pathway, the Wnt/ß-catenin pathway, and the AMPK pathway. Using this information, we predicted some lncRNAs and coding gene pairs were predicted that may function in testis development and spermatogenesis; these are listed in detail. This study has provided the most comprehensive catalog to date of lncRNAs in the postnatal pig testis and will aid our understanding of their functional roles in testis development and spermatogenesis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/veterinária , RNA Longo não Codificante/genética , Análise de Sequência de RNA/veterinária , Testículo/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , Anotação de Sequência Molecular , Espermatogênese , Suínos , Testículo/química , Via de Sinalização Wnt
19.
Yi Chuan ; 40(7): 572-584, 2018 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-30021720

RESUMO

In testicular tissue, immature Sertoli cell proliferation ability determines the size of mature Sertoli cell populations, which further regulates the spermatogenesis in the adult male animals. Studies have demonstrated that microRNAs (miRNAs) participate in the regulation of the immature Sertoli cell proliferation and apoptosis, but the functions of most identified miRNAs remain unclear. In this study, based on previous RNA-seq results, we analyzed the regulatory role (s) of miR-362 in proliferation and apoptosis of porcine immature Sertoli cells. The ZFN644 gene was predicted to be a target gene of miR-362 using bioinformatics methods. The expression levels of miR-362 and ZNF644 gene were measured using qRT-PCR assay in developing porcine testicular tissues and in immature Sertoli cells transfected with either miR-362 mimic or miR-362 inhibitor. The dual luciferase reporter assay was used to determine the regulatory relationship between miR-362 and ZNF644. The results showed that a putative target site of miR-362 was located in the 3'UTR of ZNF644. The expression of miR-362 was significantly and negatively correlated with ZNF644 expression in the developing porcine testicular tissues. Co-transfection of miR-362 and psiCHECK2-ZNF644-WT 3'UTR luciferase vector significantly suppressed luciferase activity. The ZNF644 gene expression level was significantly regulated by miR-362, demonstrating that miR-362 targets ZNF644 gene and inhibits its expression in porcine immature Sertoli cells. Flow cytometry, CCK8, and EdU assays were used to measure the effects of over-expression of miR-362 or knockdown of ZNF644 on porcine immature Sertoli cell proliferation; Annexin V-FITC/PI staining assays and qRT-PCR technology were used to test the apoptosis and the expression levels of cell survival-related genes, respectively. Over-expression of miR-362 and knockdown of ZNF644 arrested the porcine immature Sertoli cells in G1 and G2 phases of the cell cycle, respectively, and inhibited proliferation, enhanced apoptosis in the porcine immature Sertoli cells, and significantly regulated the expression levels of cell survival-related genes. Taken together, these data indicate that miR-362 inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the ZNF644 gene, thereby providing the scientific basis for further study on the function(s) of miR-362 in the porcine spermatogenesis.


Assuntos
Apoptose , Proliferação de Células , MicroRNAs/genética , Células de Sertoli/citologia , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Animais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Suínos
20.
Small ; 13(48)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044969

RESUMO

Promising semiconductor-based photocatalysis toward achieving efficient solar-to-chemical energy conversion is an ideal strategy in response to the growing worldwide energy crisis, which however is often practically limited by the insufficient photoinduced charge-carrier separation. Here, a rational cascade engineering of Au nanoparticles (NPs) decorated 2D/2D Bi2 WO6 -TiO2 (B-T) binanosheets to foster the photocatalytic efficiency through the manipulated flow of multichannel-enhanced charge-carrier separation and transfer is reported. Mechanistic characterizations and control experiments, in combination with comparative studies over plasmonic Au/Ag NPs and nonplasmonic Pt NPs decorated 2D/2D B-T composites, together demonstrate the cooperative synergy effect of multiple charge-carrier transfer channels in such binanosheets-based ternary composites, including Z-scheme charge transfer, "electron sink," and surface plasmon resonance effect, which integratively leads to the boosted photocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa