Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 114(5): 1116-1127, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539398

RESUMO

The stratum corneum is the outermost layer of human skin and the primary barrier toward the environment. The barrier function is maintained by stacked layers of saturated long-chain ceramides, free fatty acids, and cholesterol. This structure is formed through a reorganization of glycosylceramide-based bilayers with cubic-like symmetry into ceramide-based bilayers with stacked lamellar symmetry. The process is accompanied by deglycosylation of glycosylceramides and dehydration of the skin barrier lipid structure. Using coarse-grained molecular dynamics simulation, we show the effects of deglycosylation and dehydration on bilayers of human skin glycosylceramides and ceramides, folded in three dimensions with cubic (gyroid) symmetry. Deglycosylation of glycosylceramides destabilizes the cubic lipid bilayer phase and triggers a cubic-to-lamellar phase transition. Furthermore, subsequent dehydration of the deglycosylated lamellar ceramide system closes the remaining pores between adjacent lipid layers and locally induces a ceramide chain transformation from a hairpin-like to a splayed conformation.


Assuntos
Ceramidas/química , Pele/química , Ceramidas/metabolismo , Meio Ambiente , Glicosilação , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Pele/metabolismo
2.
J Struct Biol ; 203(2): 149-161, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29702212

RESUMO

In the present study we have analyzed the molecular structure and function of the human skin's permeability barrier using molecular dynamics simulation validated against cryo-electron microscopy data from near native skin. The skin's barrier capacity is located to an intercellular lipid structure embedding the cells of the superficial most layer of skin - the stratum corneum. According to the splayed bilayer model (Iwai et al., 2012) the lipid structure is organized as stacked bilayers of ceramides in a splayed chain conformation with cholesterol associated with the ceramide sphingoid moiety and free fatty acids associated with the ceramide fatty acid moiety. However, knowledge about the lipid structure's detailed molecular organization, and the roles of its different lipid constituents, remains circumstantial. Starting from a molecular dynamics model based on the splayed bilayer model, we have, by stepwise structural and compositional modifications, arrived at a thermodynamically stable molecular dynamics model expressing simulated electron microscopy patterns matching original cryo-electron microscopy patterns from skin extremely closely. Strikingly, the closer the individual molecular dynamics models' lipid composition was to that reported in human stratum corneum, the better was the match between the models' simulated electron microscopy patterns and the original cryo-electron microscopy patterns. Moreover, the closest-matching model's calculated water permeability and thermotropic behaviour were found compatible with that of human skin. The new model may facilitate more advanced physics-based skin permeability predictions of drugs and toxicants. The proposed procedure for molecular dynamics based analysis of cellular cryo-electron microscopy data might be applied to other biomolecular systems.


Assuntos
Ceramidas/química , Microscopia Crioeletrônica/métodos , Bicamadas Lipídicas/química , Pele/metabolismo , Animais , Humanos , Simulação de Dinâmica Molecular
3.
J Am Chem Soc ; 134(11): 5351-61, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22372465

RESUMO

Cholesterol plays an important role in maintaining the correct fluidity and rigidity of the plasma membrane of all animal cells, and hence, it is present in concentrations ranging from 20 to 50 mol %. Whereas the effect of cholesterol on such mechanical properties has been studied exhaustively over the last decades, the structural basis for cholesterol effects on membrane permeability is still unclear. Here we apply systematic molecular dynamics simulations to study the partitioning of solutes between water and membranes. We derive potentials of mean force for six different solutes permeating across 20 different lipid membranes containing one out of four types of phospholipids plus a cholesterol content varying from 0 to 50 mol %. Surprisingly, cholesterol decreases solute partitioning into the lipid tail region of the membranes much more strongly than expected from experiments on macroscopic membranes, suggesting that a laterally inhomogeneous cholesterol concentration and permeability may be required to explain experimental findings. The simulations indicate that the cost of breaking van der Waals interactions between the lipid tails of cholesterol-containing membranes account for the reduced partitioning rather than the surface area per phospholipid, which has been frequently suggested as a determinant for solute partitioning. The simulations further show that the partitioning is more sensitive to cholesterol (i) for larger solutes, (ii) in membranes with saturated as compared to membranes with unsaturated lipid tails, and (iii) in membranes with smaller lipid head groups.


Assuntos
Colesterol/química , Membranas Artificiais , Fosfolipídeos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Solubilidade , Água/química
4.
J Invest Dermatol ; 141(5): 1243-1253.e6, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098827

RESUMO

In vertebrates, skin upholds homeostasis by preventing body water loss. The skin's permeability barrier is located intercellularly in the stratum corneum and consists of stacked lipid lamellae composed of ceramides, cholesterol, and free fatty acids. We have combined cryo-electron microscopy with molecular dynamics modeling and electron microscopy simulation in our analysis of the lamellae's formation, a maturation process beginning in stratum granulosum and ending in stratum corneum. Previously, we have revealed the lipid lamellae's initial- and end-stage molecular organizations. In this study, we reveal two cryo-electron microscopy patterns representing intermediate stages in the lamellae's maturation process: a single-band pattern with 2.0‒2.5 nm periodicity and a two-band pattern with 5.5‒6.0 nm periodicity, which may be derived from lamellar lipid structures with 4.0‒5.0 nm and 5.5‒6.0 nm periodicity, respectively. On the basis of the analysis of the data now available on the four maturation stages identified, we can present a tentative molecular model for the complete skin barrier formation process.


Assuntos
Pele/metabolismo , Adulto , Água Corporal/metabolismo , Microscopia Crioeletrônica , Humanos , Lipídeos/química , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Permeabilidade , Pele/ultraestrutura
5.
J Control Release ; 283: 269-279, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29864475

RESUMO

Understanding and predicting permeability of compounds through skin is of interest for transdermal delivery of drugs and for toxicity predictions of chemicals. We show, using a new atomistic molecular dynamics model of the skin's barrier structure, itself validated against near-native cryo-electron microscopy data from human skin, that skin permeability to the reference compounds benzene, DMSO (dimethyl sulfoxide), ethanol, codeine, naproxen, nicotine, testosterone and water can be predicted. The permeability results were validated against skin permeability data in the literature. We have investigated the relation between skin barrier molecular organization and permeability using atomistic molecular dynamics simulation. Furthermore, it is shown that the calculated mechanism of action differs between the five skin penetration enhancers Azone, DMSO, oleic acid, stearic acid and water. The permeability enhancing effect of a given penetration enhancer depends on the permeating compound and on the concentration of penetration enhancer inside the skin's barrier structure. The presented method may open the door for computer based screening of the permeation of drugs and toxic compounds through skin.


Assuntos
Simulação de Dinâmica Molecular , Preparações Farmacêuticas/metabolismo , Absorção Cutânea , Humanos , Permeabilidade
6.
J Chem Theory Comput ; 11(12): 5737-46, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26587968

RESUMO

Long-range lattice summation techniques such as the particle-mesh Ewald (PME) algorithm for electrostatics have been revolutionary to the precision and accuracy of molecular simulations in general. Despite the performance penalty associated with lattice summation electrostatics, few biomolecular simulations today are performed without it. There are increasingly strong arguments for moving in the same direction for Lennard-Jones (LJ) interactions, and by using geometric approximations of the combination rules in reciprocal space, we have been able to make a very high-performance implementation available in GROMACS. Here, we present a new way to correct for these approximations to achieve exact treatment of Lorentz-Berthelot combination rules within the cutoff, and only a very small approximation error remains outside the cutoff (a part that would be completely ignored without LJ-PME). This not only improves accuracy by almost an order of magnitude but also achieves absolute biomolecular simulation performance that is an order of magnitude faster than any other available lattice summation technique for LJ interactions. The implementation includes both CPU and GPU acceleration, and its combination with improved scaling LJ-PME simulations now provides performance close to the truncated potential methods in GROMACS but with much higher accuracy.


Assuntos
Algoritmos , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Eletricidade Estática , Água/química
7.
J Chem Theory Comput ; 9(8): 3527-37, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26584109

RESUMO

The accuracy of electrostatic interactions in molecular dynamics advanced tremendously with the introduction of particle-mesh Ewald (PME) summation almost 20 years ago. Lattice summation electrostatics is now the de facto standard for most types of biomolecular simulations, and in particular, for lipid bilayers, it has been a critical improvement due to the large charges typically present in zwitterionic lipid headgroups. In contrast, Lennard-Jones interactions have continued to be handled with increasingly longer cutoffs, partly because few alternatives have been available despite significant difficulties in tuning cutoffs and parameters to reproduce lipid properties. Here, we present a new Lennard-Jones PME implementation applied to lipid bilayers. We confirm that long-range contributions are well approximated by dispersion corrections in simple systems such as pentadecane (which makes parameters transferable), but for inhomogeneous and anisotropic systems such as lipid bilayers there are large effects on surface tension, resulting in up to 5.5% deviations in area per lipid and order parameters-far larger than many differences for which reparameterization has been attempted. We further propose an approximation for combination rules in reciprocal space that significantly reduces the computational cost of Lennard-Jones PME and makes accurate treatment of all nonbonded interactions competitive with simulations employing long cutoffs. These results could potentially have broad impact on important applications such as membrane proteins and free energy calculations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa